COMP 322/ ELEC 323:
Fundamentals of

Parallel Programming
Lecture 1: Task Creation & Termination
(async, finish)

Instructor: Mack Joyner
Computer Science Department
Rice University
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 1 13 January 2020 @

http://comp322.rice.edu

Special Thanks to Vivek Sarkar!

COMP 322 Lecture 1 13 January 2020 @

Your Teaching Staff!

e Head TAs

* Undergraduate TAs

— Andrew Pham, Anthony Yu, Ayo Akinmade,
Jonathan Cai, Kevin Xu, Minh Vu, Mustafa El-
Gamal, Paul Jiang, Skylar Neuendorff, Thanh Vu,
Tim Cheng, Tory Songyang, William Su, Zishi
Wang

* |nstructor

— Mack Joyner

[:\’T.
COMP 322, Spring 2020 (M. Joyner) @

What is Parallel Computing?

 Parallel computing: using multiple processors in parallel to solve
problems more quickly than with a single processor and/or with less
energy

« Example of a parallel computer

—An 8-core Symmetric Multi-Processor (SMP) consisting of four dual-
core chip microprocessors (CMPs)

RAM

L3 Cache

|
< Front side bus
[[[

L

COMP 322, Spring 2020 (M. Joyner)

Memory bus controller Memory bus controller Memory bus controller Memory bus controller
CMP-0 CMP-1 CMP-2 CMP-3
L2 cache L2 cache L2 cache L2 cache
L1+ |L1-D| L1+t [L1-D]| L1+ [L1-d] L1+ Jui-p || L1+ [Li-p| L+ [Li-o || Li- | L[L1+ LD
Processor | Processor Processor | Processor Processor | Processor || Processor | Processor Source: Fi_gure 1.5 of Lin & Snyder
PO P1 P2 P3 P4 P5 P6 P7 book, Addison-Wesley, 2009

All Computers are Parallel Computers

. ——— —n——‘-—u-wr

T e T e
& oy < Lipdow o v ¢ o
Pt Tttt e S50 Sumes P To e
[SRESSRAAp Y e

nmIGIMI l‘“l*~lw(~

R N R
o Pyt § e (8 175 e $ e P {

T amergemey Dol Camevatany

o) ot e |y Vot St Lol e

0 s (A (.
Bl el e T

ui‘s....._._

[T -
Y —4..,..4

5 COMP 322, Spring 2020 (M. Joyner)

Moore’s Law and Dennard Scaling

1975 1980 1985 1990 1995
10M Micro. 500
(transistors) 00 (mips)
™M 4 25
Pentium"
‘ — Proocessor
BO4B6
100K @ 1802386 10
BO286
10K 2086 01
BO&O
‘.m(},z 0.01

Gordon Moore (co-founder of Intel) predicted in
1965 that the transistor density of
semiconductor chips would double roughly
every 1-2 years (Moore’s Law)

= area of transistor halves every 1-2 years

= feature size reduces by V2 every 1-2 years

Slide source: Jack Dongarra

6 COMP 322, Spring 2020 (M. Joyner)

Dennard Scaling states
that power for a fixed
chip area remains
constant as transistors
grow smaller

Parallelism Saves Power
(Simplified Analysis)

Nowadays (post Dennard Scaling), Power ~ (Capacitance) * (Voltage) * (Frequency)
and maximum Frequency is capped by Voltage

=>» Power is proportional to (Frequency)’

Baseline example: single 1GHz core with power P

Option A: Increase clock frequency to 2GHz =» Power = 8P

Option B: Use 2 cores at 1 GHz each =» Power = 2P

« Option B delivers same performance as Option A with 4x less power ... provided
software can be decomposed to run in parallel!

7 COMP 322, Spring 2020 (M. Joyner)

What is Parallel Programming?

« Specification of operations that can
be executed in parallel TaskA Task B

» Aparallel program is decomposed
into sequential subhcomputations
called tasks

 Parallel programming constructs
define task creation, termination, and
interaction

Schematic of a dual-core
Processor

>

8 COMP 322, Spring 2020 (M. Joyner)

Example of a Sequential Program:
Computinag the sum of arrav elements

Algorithm 1: Sequential ArraySum Computation Graph
Input: Array of numbers, X.

Output: sum = sum of elements in array X.

sum <— 0; O X[O]

for 1 < 0 to X.length — 1 do
L sum <— sum + X [i];

X[1]

return sum;

Observations: X[2]

e The decision to sum up the elements from left /
to right was arbitrary

« The computation graph shows that all
operations must be executed sequentially

9 COMP 322, Spring 2020 (M. Joyner)

Async and Finish Statements for Task
Creation and Termination (Pseudocode)

async S finish S

= Execute S, but wait until all
asyncs in S’s scope have
terminated.

Creates a new child task that
executes statement S

// T,(Parent task)
STMTO ;
finish ({ //Begin finish
async {
STMT1; //T,(Child task)
}
STMT2; //Continue in T,
//Wait for T,
} //End finish
STMT3; //Continue in T,

10 COMP 322, Spring 2020 (M. Joyner) @

Example of a Sequential Program:
Computinag the sum of arrav elements

Algorithm 1: Sequential ArraySum Computation Graph
Input: Array of numbers, X.

Output: sum = sum of elements in array X.
sum <— 0; 0 X[O]
for : < 0 to X.length — 1 do l

L sum <— sum + X [i];

X[1]

return sum;

Can you insert an async/finish anywhere to improve performance? : /

X[2]

11 COMP 322, Spring 2020 (M. Joyner)

Parallelization Strategy for two cores
(Two-wav Parallel Arrav Sum)

Task 0: Compute sum of Task 1: Compute sum of
lower half of array upper half of array
®

Compute total sum

Basic idea:

« Decompose problem into two tasks for partial sums
« Combine results to obtain final answer

 Parallel divide-and-conquer pattern

12 COMP 322, Spring 2020 (M. Joyner)

13

Two-way Parallel Array Sum
using async & finish constructs

Algorithm 2: Two-way Parallel ArraySum

Input: Array of numbers, X.
Output: sum = sum of elements in array X.
// Start of Task Tl (main program)
suml < 0; sum?2 < 0;
// Compute suml (lower half) and sum2 (upper half) in parallel.
finish{
async{
// Task T2
for i < 0 to X.length/2 — 1 do
L suml < suml + X[i];

b

async{
// Task T3
for i + X.length/2 to X.length — 1 do
L sum2 < sum?2 + X [i];

b
b

// Task T1 waits for Tasks T2 and T3 to complete
// Continuation of Task T1

sum <— suml + sum?2;

return sum;

COMP 322, Spring 2020 (M. Joyner)

Course Syllabus

« Fundamentals of Parallel Programming taught in three modules

1. Parallelism
2. Concurrency
3. Locality & Distribution

e Each module is subdivided into units, and each unit into topics

 Lecture and lecture handouts will introduce concepts using pseudocode notations

 Labs and programming assignments will be in Java 8 (Java 11 not supported yet)

14

—Initially, we will use the Habanero-Java (HJ) library developed at Rice as a pedagogic
parallel programming model

- HJ-lib is a Java 8 library (no special compiler support needed)

- HJ-lib contains many features that are easier to use than standard Java threads/
tasks, and are also being added to future parallel programming models

—Later, we will learn parallel programming using standard Java libraries, and
combinations of Java libs + HJ-lib

COMP 322, Spring 2020 (M. Joyner) @

Grade Policies

Course Rubric

15

Homework (5) 40% (written + programming components)
-+ Weightage proportional to # weeks for homework

Exams (2) 40% (scheduled midterm + scheduled final)
Labs 10% (labs need to be checked off by Monday)
Quizzes 5% (on-line quizzes on Canvas)

Class Participation 5% (in-class worksheets)

COMP 322, Spring 2020 (M. Joyner)

16

Next Steps

IMPORTANT:

—Bring your laptop to this week’s lab at 1pm or 4pm on Thursday
(SH 301)

—Watch videos for topics 1.2 & 1.3 for next lecture on Wednesday

HW1 will be assigned on Jan 15th and be due on Jan 29th.
(Homework is normally due on Wednesdays.)

Each quiz (to be taken online on Canvas) will be due on the Friday
after the unit is covered in class. The first quiz for Unit 1 (topics 1.1
- 1.5) is due by Jan 31.

See course web site for syllabus, work assignments, due dates, ...

http://comp322.rice.edu

COMP 322, Spring 2020 (M. Joyner)

https://canvas.rice.edu/courses/1844/pages/videos-for-unit-1-task-level-parallelism?module_item_id=44098
http://comp322.rice.edu

OFFICE HOURS

 Regular office hour schedule can be found at
Office Hours link on course web site

« Send email to instructor (mjoyner@rice.edu) if you
need to meet some other time this week

* And remember to post questions on Piazza!

17 COMP 322, Spring 2020 (M. Joyner) @

https://wiki.rice.edu/confluence/display/PARPROG/322OfficeHours
mailto:mjoyner@rice.edu?subject=

Worksheet #1: Due at end of class today

Honor Code Policy for Worksheets: You are free to discuss all aspects of in-class worksheets with your other classmates, the teaching assistants and the
professor during the class. You can work in a group and write down the solution that you obtained as a group. If you work on the worksheet outside of class
(e.g., due to an absence), then it must be entirely your individual effort, without discussion with any other students. If you use any material from external
sources, you must provide proper attribution. You should submit the worksheet in Canvas.

1) Parallelizing your weekday/weekend tasks!

Consider the sequential list of weekday/weekend tasks below. Assume that you have an unbounded number of helpers to help you with your chores and
tasks. Insert async and finish pseudocode annotations to maximize parallelism, while ensuring that the parallel version has no unintended/undesirable
outcomes. Make any reasonable assumptions e.g., you only have one fridge, you need to watch videos in order, you have access to multiple washers &
dryers, you can reorder statements so long as you don’t change the outcome, etc.

Watch COMP 322 video for topic 1.2 by 1pm on Wednesday

Watch COMP 322 video for topic 1.3 by 1pm on Wednesday

Make your bed

Clean out your fridge

Buy food supplies and store them in fridge

// Run two loads of laundry

{
Run load 1 in washer
Run load 2 in washer
Run load 1 in dryer
Run load 2 in dryer

}

Call your family

Post on Facebook that you’re done with all your tasks!

18 COMP 322, Spring 2020 (M. Joyner)

