
COMP 322: Fundamentals of Parallel Programming

Lecture 11: Iteration Grouping, Barrier Synchronization

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 11 February 2020

http://comp322.rice.edu

COMP 322, Spring 2020 (M.Joyner)

1) Assuming n=9 and the input array below, perform a “half-iteration” of the iterative averaging
example by only filling in the blanks for odd values of j in the myNew[] array (different from the real
algorithm). Recall that the computation is “myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;”

2) Will the contents of myVal[] and myNew[] change in further iterations?
No, this represents the converged value (equilibrium/fixpoint).
3) Write the formula for the final value of myNew[i] as a function of i and n. In general, this is the value
that we will get if m (= #iterations in sequential for-iter loop) is large enough.
After a sufficiently large number of iterations, the iterated averaging code will converge with myNew[i]
= myVal[i] = i / (n+1)

Solution to Worksheet #11: One-dimensional Iterative Averaging
Example

2

index, j 0 1 2 3 4 5 6 7 8 9 10

myVal 0 0 0.2 0 0.4 0 0.6 0 0.8 0 1

myNew 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

COMP 322, Spring 2020 (M.Joyner)

Announcements & Reminders

• Quiz for Unit 2 (topics 2.1 - 2.8) is available on Canvas, due by 11:59pm on Monday, Feb. 10th

• Midterm Exam on Thursday, Feb. 27th at TBD

3

COMP 322, Spring 2020 (M.Joyner)

HJ code for One-Dimensional Iterative Averaging
1.// Intialize m, n, myVal, newVal
2.m = … ; n = … ;
3.float[] myVal = new float[n+2];
4.float[] myNew = new float[n+2];
5.forseq(0, m-1, (iter) -> {
6. // Compute MyNew as function of input array MyVal
7. forall(1, n, (j) -> { // Create n tasks
8. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
9. }); // forall
10. // What is the purpose of line 11 below?
11. float[] temp=myVal; myVal=myNew; myNew=temp;
12.}); // forseq

4

COMP 322, Spring 2020 (M.Joyner)

What about Overheads?

• It is inefficient to create forall iterations in which each iteration (async task) does very little work

• An alternate approach is “iteration grouping” or “loop chunking”
—e.g., replace
 forall(0, 99, (i) -> BODY(i)); // 100 tasks
—by
 forall(0, 3, (ii) -> { // 4 tasks
 // Each task executes a “chunk” of 25 iterations
 forseq(25*ii, 25*(ii+1)-1, (i) -> BODY(i));
 
 }); // forall
—This is better, but it’s still inconvenient for the programmer to do the “iteration grouping” or “loop

chunking” explicitly

5

COMP 322, Spring 2020 (M.Joyner)

forallChunked APIs

•forallChunked(int s0, int e0, int chunkSize,
edu.rice.hj.api.HjProcedure<Integer> body)
•Like forall(int s0, int e0, edu.rice.hj.api.HjProcedure<Integer> body)
•but forallChunked includes chunkSize as the third parameter!

•e.g., replace
forall(0, 99, (i) -> BODY(i)); // 100 tasks
•by
 forallChunked(0, 99, 100/4, (i)->BODY(i));

6

http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module1.html#forallChunked-int-int-int-edu.rice.hj.api.HjProcedure-
http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module1.html#forallChunked-int-int-int-edu.rice.hj.api.HjProcedure-

COMP 322, Spring 2020 (M.Joyner)

1.int nc = numWorkerThreads();
2. … // Initializations
3.forseq(0, m-1, (iter) -> {
4. // Compute MyNew as function of input array MyVal
5. forallChunked(1, n, n/nc, (j) -> { // Create n/nc tasks
6. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
7. }); // forallChunked
8. // Swap myVal & myNew;
9. float[] temp=myVal; myVal=myNew; myNew=temp;
10. // myNew becomes input array for next iteration
11.}); // forseq

7

COMP 322, Spring 2020 (M.Joyner)

Barrier Synchronization: Hello-Goodbye Forall Example (Pseudocode)

forall (0, m - 1, (i) -> {

 int sq = i*i; // NOTE: video used lookup(i) instead

 System.out.println(“Hello from task with square = “ + sq);

 System.out.println(“Goodbye from task with square = “ + sq);

});

Sample output for m = 4:
Hello from task with square = 0
Hello from task with square = 1
Goodbye from task with square = 0
Hello from task with square = 4
Goodbye from task with square = 4
Goodbye from task with square = 1
Hello from task with square = 9
Goodbye from task with square = 9

8

COMP 322, Spring 2020 (M.Joyner)

Hello-Goodbye Forall Example (contd)
forall (0, m - 1, (i) -> {

 int sq = i*i;

 System.out.println(“Hello from task with square = “ + sq);

 System.out.println(“Goodbye from task with square = “ + sq);

});

• Question: how can we transform this code so as to ensure that all tasks say hello before any tasks say
goodbye?

• Statements in red below will need to be moved to solve this problem

 Hello from task with square = 0
Hello from task with square = 1
Goodbye from task with square = 0
Hello from task with square = 4
Goodbye from task with square = 4
Goodbye from task with square = 1
Hello from task with square = 9
Goodbye from task with square = 9

9

COMP 322, Spring 2020 (M.Joyner)

Hello-Goodbye Forall Example (contd)
forall (0, m - 1, (i) -> {

 int sq = i*i;

 System.out.println(“Hello from task with square = “ + sq);

 System.out.println(“Goodbye from task with square = “ + sq);

});

• Question: how can we transform this code so as to ensure that all tasks say hello before any tasks say goodbye?

• Approach 1: Replace the forall loop by two forall loops, one for the hello’s and one for the goodbye’s
— What’s the problem here?

1. // APPROACH 1

2. forall (0, m - 1, (i) -> {

3. int sq = i*i;

4. System.out.println(“Hello from task with square = “ + sq);

5. });

6. forall (0, m - 1, (i) -> {

7. System.out.println(“Goodbye from task with square = “ + sq);

8. });

10

COMP 322, Spring 2020 (M.Joyner)

Hello-Goodbye Forall Example (contd)

• Question: how can we transform this code so as to ensure that all tasks say hello before any tasks say
goodbye, without having to change local ?

• Approach 2: insert a “barrier” (“next” statement) between the hello’s and goodbye’s
1. // APPROACH 2

2. forallPhased (0, m - 1, (i) -> {

3. int sq = i*i;

4. System.out.println(“Hello from task with square = “ + sq);

5. next(); // Barrier

6. System.out.println(“Goodbye from task with square = “ + sq);

7. });

• next -> each forallPhased iteration waits at barrier until all iterations arrive (previous
phase is completed), after which the next phase can start

— Scope of next is the closest enclosing forallPhased statement
— If a forallPhased iteration terminates before executing “next”, then the other iterations don’t wait for it

11

Phase 0

Phase 1

COMP 322, Spring 2020 (M.Joyner)

Impact of barrier on scheduling forallPhased iterations

12

Four
forallPhased
iterations,
each with a
next() barrier

Phase 0 Phase 1

i=0 //A1
i=1 //A2
i=2 //A3
i=3 //A4

SIG

SIG

SIG

WAIT

SIG

WAIT

WAIT

WAIT

next
signal edges

wait edges

next() = SIG + WAIT

 next() operation is
modeled in the
Computation Graph
using signal and wait
edges

COMP 322, Spring 2020 (M.Joyner)

forallPhased API’s in HJlib

• static void forallPhased(int s0, int e0,
edu.rice.hj.api.HjProcedure<java.lang.Integer> body)

• static <T> void forallPhased(java.lang.Iterable<T> iterable,
edu.rice.hj.api.HjProcedure<T> body)

• static void next()

• NOTE:
— All forallPhased API’s include an implicit finish at the end (just like a regular

forall)
— Calls to next() are only permitted in forallPhased(), not in forall()

13

http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module1.html

http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module1.html#forall-int-int-edu.rice.hj.api.HjProcedure-
http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module1.html#forall-java.lang.Iterable-edu.rice.hj.api.HjProcedure-
http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module1.html#next--
http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module1.html

COMP 322, Spring 2020 (M.Joyner)

Observation 1: Scope of synchronization for “next” barrier is its closest
enclosing forallPhased statement

1. forallPhased (0, m - 1, (i) -> {
2. println(“Starting forall iteration ” + i);
3. next(); // Acts as barrier for forallPhased-i
4. forallPhased (0, n - 1, (j) -> {
5. println(“Hello from task (“ + i + “,” + j + “)”);
6. next(); // Acts as barrier for forallPhased-j
7. println(“Goodbye from task (“ + i + “,” + j + “)”);
8. } // forallPhased-j
9. next(); // Acts as barrier for forallPhased-i
10. println(“Ending forallPhased iteration ” + i);
11.}); // forallPhased-i

14

COMP 322, Spring 2020 (M.Joyner)

Observation 2: If a forall iteration terminates before “next”, then other iterations do
not wait for it

15

1. forallPhased (0, m - 1, (i) -> {
2. forseq (0, i, (j) -> {
3. // forall iteration i is executing phase j
4. System.out.println("(" + i + "," + j + ")");
5. next();
6. }); //forseq-j

7. }); //forall-i

• Outer forall-i loop has m iterations, 0…m-1

• Inner sequential j loop has i+1 iterations, 0…i

• Line 4 prints (task,phase) = (i, j) before performing a next operation.

• Iteration i = 0 of the forall-i loop prints (0, 0), performs a next, and then terminates. Iteration i = 1 of the forall-i
loop prints (1,0), performs a next, prints (1,1), performs a next, and then terminates. And so on.

COMP 322, Spring 2020 (M.Joyner)

Barrier Matching for previous example

16

• Iteration i=0 of the forallPhased-i
loop prints (0, 0) in Phase 0,
performs a next, and then ends
Phase 1 by terminating.

• Iteration i=1 of the forallPhased-i
loop prints (1,0) in Phase 0,
performs a next, prints (1,1) in
Phase 1, performs a next, and
then ends Phase 2 by
terminating.

• And so on until iteration i=8 ends
an empty Phase 8 by terminating

Phase 0

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 6

Phase 7

Phase 8

i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7
 | | | | | | | |
(0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0)
 | | | | | | | |
next ----- next ----- next ----- next ----- next ----- next ----- next ----- next
 | | | | | | | |
 | (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1)
 | | | | | | | |
end ----- next ----- next ----- next ----- next ----- next ----- next ----- next
 | | | | | | |

 | (2,2) (3,2) (4,2) (5,2) (6,2) (7,2)
 | | | | | | |
 end ----- next ----- next ----- next ----- next ----- next ----- next

 | | | | | |
 | (3,3) (4,3) (5,3) (6,3) (7,3)

 | | | | | |
 end ----- next ----- next ----- next ----- next ----- next

 | | | | |
 | (4,4) (5,4) (6,4) (7,4)

 | | | | |
 end ----- next ----- next ----- next ----- next

 | | | |
 | (5,5) (6,5) (7,5)

 | | | |
 end ----- next ----- next ----- next

 | | |
 | (6,6) (7,6)

 | | |
 end ----- next ----- next

 | |
 | (7,7)

 | |
 end ----- next

 |
 end

i=0…7 are forall iterations

(i,j) = println output

next = barrier operation

end = termination of a forall iteration

COMP 322, Spring 2020 (M.Joyner)

Observation 3: Different forallPhased iterations may perform “next” at different
program points

1. forallPhased (0, m-1, (i) -> {
2. if (i % 2 == 1) { // i is odd
3. oddPhase0(i);
4. next();
5. oddPhase1(i);
6. } else { // i is even
7. evenPhase0(i);
8. next();
9. evenPhase1(i);
10. } // if-else
11. }); // forall

• Barrier operation synchronizes odd-numbered iterations at line 4 with even-numbered iterations in line 8

• One reason why barriers are “less structured” than finish, async, future

17

Barriers are not statically
scoped — matching barriers
may come from different
program points, and may even
be in different methods!

COMP 322, Spring 2020 (M.Joyner)

Parallelizing loops in Matrix Multiplication example using forall

1. // Parallel version using forall
2. forall(0, n-1, 0, n-1, (i, j) -> {
3. c[i][j] = 0;
4. });
5. forall(0, n-1, 0, n-1, (i, j) -> {
6. forseq(0, n-1, (k) -> {
7. c[i][j] += a[i][k] * b[k][j];
8. });
9. });
10. // Print first element of output matrix
11. println(c[0][0]);

18

c[i,j] = ∑ a[i,k] * b[k,j]
 0 ≤ k < n

