
COMP 322: Fundamentals of Parallel Programming

Lecture 31: Introduction to the Message Passing Interface (MPI)
(Start of Module 3 on Distribution and Locality)

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 31 April 2020

http://comp322.rice.edu

COMP 322, Spring 2020 (M.Joyner)

Worksheet 30 Solution: Characterizing Solutions to the Dining
Philosophers Problem

2

Deadlock Livelock Starvation Non-
concurrency

Solution 1:
synchronized

Yes No Yes Yes

Solution 2:
tryLock/
unLock

No Yes Yes Yes

Solution 3:
isolated

No No Yes Yes

Solution 4:
object-based
isolation

No No Yes No

Solution 5:
semaphores

No No No No

COMP 322, Spring 2020 (M.Joyner)

Acknowledgements for Today’s Lecture

• “Principles of Parallel Programming”, Calvin Lin & Lawrence Snyder
—Includes resources available at http://www.pearsonhighered.com/educator/academic/product/

0,3110,0321487907,00.html
• “Parallel Architectures”, Calvin Lin

—Lectures 5 & 6, CS380P, Spring 2009, UT Austin
—http://www.cs.utexas.edu/users/lin/cs380p/schedule.html

• Slides accompanying Chapter 6 of “Introduction to Parallel Computing”, 2nd Edition, Ananth Grama,
Anshul Gupta, George Karypis, and Vipin Kumar, Addison-Wesley, 2003
—http://www-users.cs.umn.edu/~karypis/parbook/Lectures/AG/chap6_slides.pdf

• MPI slides from “High Performance Computing: Models, Methods and Means”, Thomas Sterling, CSC
7600, Spring 2009, LSU
—http://www.cct.lsu.edu/csc7600/coursemat/index.html

• mpiJava home page: http://www.hpjava.org/mpiJava.html
• MPI lectures given at Rice HPC Summer Institute 2009, Tim Warburton, May 2009

3

http://www.pearsonhighered.com/educator/academic/product/0,3110,0321487907,00.html
http://www-users.cs.umn.edu/~karypis/parbook/Lectures/AG/chap6_slides.pdf
http://www.cct.lsu.edu/csc7600/coursemat/index.html
http://www.hpjava.org/mpiJava.html

COMP 322, Spring 2020 (M.Joyner)

Organization of a Shared-Memory Multicore Symmetric
Multiprocessor (SMP)

Memory hierarchy for a single Intel Xeon (Nehalem) Quad-core processor chip

4

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core A

L3 unified cache
(shared by all cores)

Main memory

Regs

L1
d-cache

Core B

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core C

Regs

L1
d-cache

Core D

L1
i-cache

Cores communicate
by reading and writing
data in a “shared memory”

COMP 322, Spring 2020 (M.Joyner)

What is the cost of a Memory Access?
An example Memory Hierarchy

5

Registers

L1 cache
 (Static RAM)

Main memory
(Dynamic RAM)

Local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

Remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold
files retrieved from
disks on remote
network servers

Main memory holds disk
blocks retrieved from local
disks

L2 cache
(Static RAM)

L1 cache holds cache lines
retrieved from L2 cache

CPU registers hold words
retrieved from L1 cache

L2 cache holds cache lines
retrieved from main

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

COMP 322, Spring 2020 (M.Joyner)

Organization of a Distributed-Memory Multiprocessor

Figure (a)
• Host node (Pc) connected to a cluster of processor nodes (P0 … Pm)
• Processors P0 … Pm communicate via an interconnection network which could be standard TCP/IP

(e.g., for Map-Reduce) or specialized for high performance communication (e.g., for scientific
computing)

Figure (b)
• Each processor node consists of a processor, memory, and a Network Interface Card (NIC) connected

to a router node (R) in the interconnect

6

Processors communicate by sending messages via an interconnect

COMP 322, Spring 2020 (M.Joyner)

Message Passing for Distributed-Memory Multiprocessors

• The logical view of a machine supporting the message-passing paradigm consists of p processes,
each with its own exclusive address space, that are capable of executing on different nodes in a
distributed-memory multiprocessor
1.Each data element must belong to one of the partitions of the space; hence, data must be explicitly

partitioned and placed.
2.All interactions (read-only or read/write) require cooperation of two processes - the process that has

the data and the process that wants to access the data.

• These two constraints, while onerous, make underlying costs very explicit to the programmer.

• In this loosely synchronous (“bulk synchronous”) model, processes synchronize infrequently to
perform interactions. Between these interactions, they execute completely asynchronously.

7

COMP 322, Spring 2020 (M.Joyner)

Data Distribution: Local View in Distributed-Memory Systems

8

COMP 322, Spring 2020 (M.Joyner)

MPI: The Message Passing Interface

• The Message Passing Interface (MPI) standard was designed to exploit high-performance
interconnects
—MPI was standardized in the early 1990s by the MPI Forum—a substantial consortium of vendors

and researchers
– http://www-unix.mcs.anl.gov/mpi

—It is an API for communication between nodes of a distributed memory parallel computer
—The original standard defines bindings to C and Fortran (later C++)

– Java support is available from a research project, mpiJava, developed at Indiana University 10+
years ago
http://www.hpjava.org/mpiJava.html

• Most MPI programs are written using the single program multiple data (SPMD) model

9

http://www-unix.mcs.anl.gov/mpi
http://www.hpjava.org/mpiJava.html

COMP 322, Spring 2020 (M.Joyner)

SPMD Pattern

• SPMD: Single Program Multiple Data
• Run the same program on P processing elements (PEs)
• Use the “rank” … an ID ranging from 0 to (P-1) … to determine what computation is performed on

what data by a given PE
⇒ you can think of the rank as the index of an implicit foralls across all PEs

• Different PEs can follow different paths through the same code
• Convenient pattern for hardware platforms that are not amenable to efficient forms of dynamic task

parallelism
—General-Purpose Graphics Processing Units (GPGPUs)
—Distributed-memory parallel machines

• Key design decisions --- how should data and computation be distributed across PEs?

10

COMP 322, Spring 2020 (M.Joyner)

Using Single Program Multiple Data model with a Local View

•Processors must communicate via messages for non-local data accesses
• Similar to communication constraint for actors — except that we allow hybrid combinations of task

parallelism and actor parallelism in HJlib, but there is no integration (as yet) of HJlib or Java ForkJoin
with mpiJava

11

COMP 322, Spring 2020 (M.Joyner)

The Minimal Set of MPI Routines

•MPI.Init(args)
—initialize MPI in each process

•MPI.Finalize()
—terminate MPI

•MPI.COMM_WORLD.Size()
—number of processes in COMM_WORLD communicator

•MPI.COMM_WORLD.Rank()
—rank of this process in COMM_WORLD communicator
•Note:

— COMM_WORLD is the default communicator that includes all N processes, and numbers them with
ranks from 0 to N-1

12

COMP 322, Spring 2020 (M.Joyner)

Our First MPI Program (mpiJava)

1. import mpi.*;
2. class Hello {
3. static public void main(String[] args) {
4. // Init() be called before other MPI calls
5. MPI.Init(args);
6. int npes = MPI.COMM_WORLD.Size()
7. int myrank = MPI.COMM_WORLD.Rank() ;
8. System.out.println(”My process number is ” + myrank);
9. MPI.Finalize(); // Shutdown and clean-up
10. }
11.}

13

main() is enclosed in an
implicit “forall” --- each
process runs a separate
instance of main() with
“index variable” = myrank

COMP 322, Spring 2020 (M.Joyner)

MPI Communicators

• Communicator is an internal object
—Communicator registration is like phaser registration, except that MPI does not support
dynamic creation of new processes in a communicator

• MPI programs are made up of communicating processes
• Each process has its own address space containing its own attributes such as rank, size (and
argc, argv, etc.)

• MPI provides functions to interact with it
• Default communicator is MPI.COMM_WORLD

—All processes are its members
—It has a size (the number of processes)
—Each process has a rank within it
—Can think of it as an ordered list of processes

• Additional communicator(s) can co-exist
• A process can belong to more than one communicator
• Within a communicator, each process has a unique rank

14

MPI.COMM_WORLD

0

1
2

5

3

4

6

7

COMP 322, Spring 2020 (M.Joyner)

Adding Send and Recv to the Minimal Set of MPI Routines

•MPI.Init(args)
—initialize MPI in each process

•MPI.Finalize()
—terminate MPI

•MPI.COMM_WORLD.Size()
—number of processes in COMM_WORLD communicator

•MPI.COMM_WORLD.Rank()
—rank of this process in COMM_WORLD communicator

•MPI.COMM_WORLD.Send()
—send message using COMM_WORLD communicator

•MPI.COMM_WORLD.Recv()
—receive message using COMM_WORLD communicator

15

Point-
to-
point
communication

COMP 322, Spring 2020 (M.Joyner)

MPI Blocking Point to Point Communication: Basic Idea

•A very simple communication between two processes is:
—process zero sends ten doubles to process one

• In MPI this is a little more complicated than you might expect

•Process zero has to tell MPI:
—to send a message to process one
—that the message contains ten entries
—the entries of the message are of type double
—the message has to be tagged with a label (integer number)

•Process one has to tell MPI:
—to receive a message from process zero
—that the message contains ten entries
—the entries of the message are of type double
—the label that process zero attached to the message

16

COMP 322, Spring 2020 (M.Joyner)

mpiJava Send and Receive

• Send and Recv methods in Comm object:
 void Send(Object buf, int offset, int count,
 Datatype type, int dest, int tag);
 Status Recv(Object buf, int offset, int count,
 Datatype type, int src, int tag);

• The arguments buf, offset, count, type describe the data buffer to be sent and received.

• Both Send() and Recv() are blocking operations ==> potential for deadlock!
— Send() waits for a matching Recv() from its dest rank with matching type and tag
— Recv() waits for a matching Send() from its src rank with matching type and tag
— Analogous to a phaser-specific next operation between two tasks registered in SIG_WAIT mode
— The Recv() method also returns a Status value, discussed later.

17

COMP 322, Spring 2020 (M.Joyner)

Example of Send and Recv
1.import mpi.*;
2.class myProg {
3. public static void main(String[] args) {
4. int tag0 = 0; int tag1 = 1;
5. MPI.Init(args); // Start MPI computation
6. if (MPI.COMM_WORLD.rank() == 0) { // rank 0 = sender
7. int loop[] = new int[1]; loop[0] = 3;
8. MPI.COMM_WORLD.Send("Hello World!", 0, 12, MPI.CHAR, 1, tag0);
9. MPI.COMM_WORLD.Send(loop, 0, 1, MPI.INT, 1, tag1);
10. } else { // rank 1 = receiver
11. int loop[] = new int[1]; char msg[] = new char[12];
12. MPI.COMM_WORLD.Recv(msg, 0, 12, MPI.CHAR, 0, tag0);
13. MPI.COMM_WORLD.Recv(loop, 0, 1, MPI.INT, 0, tag1);
14. for (int i = 0; i < loop[0]; i++)
15. System.out.println(msg);
16. }
17. MPI.Finalize(); // Finish MPI computation
18. }
19.}

Send() and Recv() calls are blocking operations

18

COMP 322, Spring 2020 (M.Joyner)

Announcements & Reminders

• Hw #4 (Checkpoint #1) is due by Monday, April 13th at 11:59pm

•Quiz for Unit 7 is due Friday, April 17th at 11:59pm

19

COMP 322, Spring 2020 (M.Joyner)

Worksheet #31: MPI send and receive
In the space below, indicate what values you expect the print statement in line 10 to output, assuming
that the program is executed with two MPI processes.

1. int a[], b[];
2. ...
3. if (MPI.COMM_WORLD.rank() == 0) {
4. MPI.COMM_WORLD.Send(a, 0, 10, MPI.INT, 1, 1);
5. MPI.COMM_WORLD.Send(b, 0, 10, MPI.INT, 1, 2);
6. }
7. else {
8. Status s2 = MPI.COMM_WORLD.Recv(b, 0, 10, MPI.INT, 0, 2);
9. Status s1 = MPI.COMM_WORLD.Recv(a, 0, 10, MPI_INT, 0, 1);
10. System.out.println(“a = “ + a + “ ; b = “ + b);
11.}
12. …

20

