
COMP 322: Fundamentals of Parallel Programming

Lecture 34: Task Affinity with Places

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 34 April 2020

http://comp322.rice.edu

COMP 322, Spring 2020 (M.Joyner)

Organization of a Distributed-Memory Multiprocessor
Figure (a)
• Host node (Pc) connected to a cluster of processor nodes (P0 … Pm)
• Processors P0 … Pm communicate via an interconnection network which could be standard TCP/IP (e.g.,

for Map-Reduce) or specialized for high performance communication (e.g., for scientific computing)
Figure (b)
• Each processor node consists of a processor, memory, and a Network Interface Card (NIC) connected to

a router node (R) in the interconnect

2

Processors communicate by sending messages via an interconnect

COMP 322, Spring 2020 (M.Joyner)

Organization of a Shared-Memory Multicore Symmetric
Multiprocessor (SMP)

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core A

L3 unified cache
(shared by all cores)

Main memory

Regs

L1
d-cache

Core B

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core C

Regs

L1
d-cache

Core D

L1
i-cache

• Memory hierarchy for a single Intel Xeon (Nehalem) Quad-core processor chip
—A NOTS node contains TWO 8-core or 12-core E5-2650 v2 Ivy Bridge chips, for a total of 16 or 24 cores

3

Cores communicate
by reading and writing
data in a “shared memory”

COMP 322, Spring 2020 (M.Joyner)

What is the cost of a Memory Access?
An example Memory Hierarchy

Registers

L1 cache
 (Static RAM)

Main memory
(Dynamic RAM)

Local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

Remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

L2 cache
(Static RAM)

L1 cache holds cache lines
retrieved from L2 cache

CPU registers hold words retrieved
from L1 cache

L2 cache holds cache lines
retrieved from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx4

http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx
http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

COMP 322, Spring 2020 (M.Joyner)

Cache Memories
• Cache memories are small, fast SRAM-based memories managed

automatically in hardware.
—Hold frequently accessed blocks of main memory

• CPU looks first for data in caches (e.g., L1, L2, and L3), then in main memory.

• Typical system structure:

5 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx
http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

COMP 322, Spring 2020 (M.Joyner)

Locality
• Principle of Locality:

—Empirical observation: Programs tend to use data and instructions with addresses near or
equal to those they have used recently

• Temporal locality:
—Recently referenced items are likely  

to be referenced again in the near future

• Spatial locality:
— Items with nearby addresses tend  

to be referenced close together in time
—A Java programmer can only influence spatial locality at the intra-object level
– The garbage collector and memory management system determines inter-object placement

6 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx
http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

COMP 322, Spring 2020 (M.Joyner)

Locality Example

• Data references
—Reference array elements in succession

(stride-1 reference pattern).
—Reference variable sum each iteration.

• Instruction references
—Reference instructions in sequence.
—Cycle through loop repeatedly.

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];
return sum;

Spatial locality

Temporal locality

Spatial locality

Temporal locality

7 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx
http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

COMP 322, Spring 2020 (M.Joyner)

Memory Hierarchy in a Multicore Processor

• Memory hierarchy for a single Intel Xeon (Nehalem) Quad-core processor chip

8

Core-pair

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core A

L3 unified cache
(shared by all cores)

Main memory

Regs

L1
d-cache

Core B

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core C

Regs

L1
d-cache

Core D

L1
i-cache

COMP 322, Spring 2020 (M.Joyner)

Programmer Control of Task Assignment to Processors

• The parallel programming constructs that we’ve studied thus far result in tasks
that are assigned to processors dynamically by the HJ runtime system

— Programmer does not worry about task assignment details

• Sometimes, programmer control of task assignment can lead to significant
performance advantages due to improved locality

• Motivation for HJ “places”
— Provide the programmer a mechanism to restrict task execution to a subset of processors for

improved locality

9

COMP 322, Spring 2020 (M.Joyner)

Places in HJlib

HJ Places

Java Worker Threads

HJ programmer defines mapping from HJ
tasks to set of places

HJ Tasks

HJ runtime defines mapping from places to one
or more worker Java threads per place

The API calls
HjSystemProperty.numPlaces.set(p);
HjSystemProperty.numWorkers.set(w);

when executing an HJ program can be used to
specify
 p, the number of places
 w, the number of worker threads per place
we will abbreviate this as p:w

OS threads

Processor Cores

10

COMP 322, Spring 2020 (M.Joyner)

Example of 4:2 option on an 8-core node
(4 places w/ 2 workers per place)

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core A

Regs

L1
d-cache

Core B

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core C

Regs

L1
d-cache

Core D

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core E

Regs

L1
d-cache

Core F

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core G

Regs

L1
d-cache

Core H

L1
i-cache

11

Place 0 Place 1

Place 2 Place 3

COMP 322, Spring 2020 (M.Joyner)

Places in HJlib
here() = place at which current task is executing

numPlaces() = total number of places (runtime constant)
Specified by value of p in runtime option:
HjSystemProperty.numPlaces.set(p);

place(i) = place corresponding to index i

<place-expr>.toString() returns a string of the form “place(id=0)”

<place-expr>.id() returns the id of the place as an int

asyncAt(P, () -> S)
• Creates new task to execute statement S at place P
• async(() -> S) is equivalent to asyncAt(here(), () -> S)
• Main program task starts at place(0)

Note that here() in a child task refers to the place P at which the child task is executing, not the place
where the parent task is executing

12

COMP 322, Spring 2020 (M.Joyner)

Example of 4:2 option on an 8-core node
(4 places w/ 2 workers per place)

// Main program starts at place 0
asyncAt(place(0), () -> S1);
asyncAt(place(0), () -> S2);

asyncAt(place(1), () -> S3);
asyncAt(place(1), () -> S4);
asyncAt(place(1), () -> S5);

13

asyncAt(place(2), () -> S6);
asyncAt(place(2), () -> S7);
asyncAt(place(2), () -> S8);

asyncAt(place(3), () -> S9);
asyncAt(place(3), () -> S10);

COMP 322, Spring 2020 (M.Joyner)

Example of 1:8 option (1 place w/ 8 workers per place)

14

All async’s run at place 0 when there’s only one place!

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core A

Regs

L1
d-cache

Core B

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core C

Regs

L1
d-cache

Core D

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core E

Regs

L1
d-cache

Core F

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core G

Regs

L1
d-cache

Core H

L1
i-cache

Place 0

COMP 322, Spring 2020 (M.Joyner)

HJ program with places

15

1. private static class T1 {
2. final HjPlace affinity;

4. public T1(HjPlace affinity) {
5. // set affinity of instance to place where it is created
6. this.affinity = here();
7. ...
8. }
9. public void foo() { ... }
10. }
11.
12. finish(() -> {
13. println("Parent place: " + here());
14. for (T1 a : t1Objects) {
15. // Execute async at place with affinity to a
16. asyncAt(a.affinity, () -> {
17. println("Child place: " + here()); // Child task's place
18. a.foo();
19. });
20. }
21. });

COMP 322, Spring 2020 (M.Joyner)

Chunked Fork-Join Iterative Averaging Example with Places

1. public void runDistChunkedForkJoin(
2. int iterations, int numChunks, Dist dist) {
3. // dist is a user-defined map from int to HjPlace
4. for (int iter = 0; iter < iterations; iter++) {
5. finish(() -> {
6. forseq (0, numChunks - 1, (jj) -> {
7. asyncAt(dist.get(jj), () -> {
8. forseq (getChunk(1, n, numChunks, jj), (j) -> {
9. myNew[j] = (myVal[j-1] + myVal[j+1]) / 2.0;
10. }
11. });
12. });
13. });
14. double[] temp = myNew; myNew = myVal; myVal = temp;
15. } // for iter
16. }

• Chunk jj is always executed in the same place for each iter
• Method runDistChunkedForkJoin can be called with different values of distribution parameter d

16

COMP 322, Spring 2020 (M.Joyner)

Analyzing Locality of Fork-Join Iterative Averaging Example with Places

17

COMP 322, Spring 2020 (M.Joyner)

Block Distribution

• A block distribution splits the index region into contiguous subregions, one per
place, while trying to keep the subregions as close to equal in size as possible.

• Block distributions can improve the performance of parallel loops that exhibit
spatial locality across contiguous iterations.

• Example: dist.get(index) for a block distribution on 4 places, when index is in
the range, 0…15

18

COMP 322, Spring 2020 (M.Joyner)

Distributed Parallel Loops

• The pseudocode below shows the typical pattern used to iterate over an input
region r, while creating one async task for each iteration p at the place dictated
by distribution d i.e., at place d.get(p).

• This pattern works correctly regardless of the rank and contents of input
region r and input distribution d i.e., it is not constrained to block distributions

19

COMP 322, Spring 2020 (M.Joyner)

Cyclic Distribution

• A cyclic distribution “cycles” through places 0 … place.MAX PLACES − 1 when
spanning the input region

• Cyclic distributions can improve the performance of parallel loops that exhibit
load imbalance

• Example: dist.get(index) for a cyclic distribution on 4 places, when index is in
the range, 0…15

20

COMP 322, Spring 2020 (M.Joyner)

Announcements & Reminders

•Quiz for Unit 7 is due today at 11:59pm

•The entire written + programming (Checkpoint #2) is due by Wednesday, April 22nd at 11:59pm

•Quiz for Unit 8 will be available today and is due Friday, April 24th at 11:59pm

21

COMP 322, Spring 2020 (M.Joyner)

Worksheet #34: impact of distribution on parallel completion time

1. public void sampleKernel(
2. int iterations, int numChunks, Distribution dist) {
3. for (int iter = 0; iter < iterations; iter++) {
4. finish(() -> {
5. forseq (0, numChunks - 1, (jj) -> {
6. asyncAt(dist.get(jj), () -> {
7. doWork(jj);
8. // Assume that time to process chunk jj = jj units
9. });
10. });
11. });
12. } // for iter
13. } // sample kernel

• Assume an execution with n places, each place with one worker thread
• Will a block or cyclic distribution for dist have a smaller abstract completion time, assuming that all
tasks on the same place are serialized with one worker per place?

22

