Lecture 3: Multiprocessor Scheduling

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu
One Possible Solution to Worksheet 2 (Reverse Engineering a Computation Graph)

A
→ B → C

D —→ E —→ F —→ G

H

Observations:

- Any node with out-degree > 1 must be an async (must have an outgoing spawn edge)
- Any node with in-degree > 1 must be an end-finish (must have an incoming join edge)
- Adding or removing transitive edges does not impact ordering constraints

1. A();
2. finish { // F1
3. async D();
4. B();
5. E();
6. finish { // F2
7. async H();
8. F();
9. } // F2
10. G();
11. } // F1
12. C();
Ordering Constraints and Transitive Edges in a Computation Graph

- The primary purpose of a computation graph is to determine if an ordering constraint exists between two steps (nodes)
 - Observation: Node A must be performed before node B if there is a path of directed edges from A and B

- An edge, $X \rightarrow Y$, in a computation graph is said to be *transitive* if there exists a path of directed edges from X to Y that does not include the $X \rightarrow Y$ edge
 - Observation: Adding or removing a transitive edge does not change the ordering constraints in a computation graph
Ideal Parallelism (Recap)

- Define **ideal parallelism** of Computation Graph as the ratio, \(\text{WORK}(G)/\text{CPL}(G) \)

- Ideal Parallelism only depends on the computation graph, and is the speedup that you can obtain with an unbounded number of processors

Example:

\(\text{WORK}(G) = 26 \)
\(\text{CPL}(G) = 11 \)

Ideal Parallelism = \(\text{WORK}(G)/\text{CPL}(G) = 26/11 \approx 2.36 \)
What is the critical path length of this parallel computation?

1. `finish { // F1`
2. `async A; // Boil water & pasta (10)`
3. `finish { // F2`
4. `async B1; // Chop veggies (5)`
5. `async B2; // Brown meat (10)`
6. `} // F2`
7. `B3; // Make pasta sauce (5)`
8. `} // F1`
Scheduling of a Computation Graph on a fixed number of processors

Node label = time(N), for all nodes N in the graph

NOTE: this schedule achieved a completion time of 11. Can we do better?
Scheduling of a Computation Graph on a fixed number of processors

• Assume that node N takes TIME(N) regardless of which processor it executes on, and that there is no overhead for creating parallel tasks.

• A schedule specifies the following for each node:
 — \(\text{START}(N) = \text{start time} \)
 — \(\text{PROC}(N) = \text{index of processor in range 1...P} \)

such that
 — \(\text{START}(i) + \text{TIME}(i) \leq \text{START}(j) \), for all CG edges from i to j (Precedence constraint)
 — A node occupies consecutive time slots in a processor (Non-preemption constraint)
 — All nodes assigned to the same processor occupy distinct time slots (Resource constraint)
Greedy Schedule

• A greedy schedule is one that never forces a processor to be idle when one or more nodes are ready for execution

• A node is ready for execution if all its predecessors have been executed

• Observations
 —\(T_1 = \text{WORK}(G) \), for all greedy schedules
 —\(T_\infty = \text{CPL}(G) \), for all greedy schedules

• \(T_P(S) = \) execution time of schedule \(S \) for computation graph \(G \) on \(P \) processors
Lower Bounds on Execution Time of Schedules

- Let T_P = execution time of a schedule for computation graph G on P processors
 - T_P can be different for different schedules, for same values of G and P

- Lower bounds for all greedy schedules
 - Capacity bound: $T_P \geq \text{WORK}(G)/P$
 - Critical path bound: $T_P \geq \text{CPL}(G)$

- Putting them together
 - $T_P \geq \max(\text{WORK}(G)/P, \text{CPL}(G))$
Upper Bound on Execution Time of Greedy Schedules

Theorem [Graham '66]. Any greedy scheduler achieves

$$T_P \leq \text{WORK}(G)/P + \text{CPL}(G)$$

Proof sketch:
Define a time step to be complete if P processors are scheduled at that time, or incomplete otherwise

complete time steps \leq WORK(G)/P

incomplete time steps \leq CPL(G)
Bounding the Performance of Greedy Schedulers

Combine lower and upper bounds to get
max(WORK(G)/P, CPL(G)) ≤ T_P ≤ WORK(G)/P + CPL(G)

Corollary: Any greedy scheduler achieves execution time T_P that is within a factor of 2 of the optimal time (since max(a,b) and (a+b) are within a factor of 2 of each other, for any a ≥ 0, b ≥ 0).
Announcements & Reminders

• No lab next week
• Lab #1 needs to get checked off or committed and pushed by 11:59pm
• HW #1 due on Wednesday, Feb 10th at 11:59pm
• IMPORTANT: Watch video & read handout for topic 1.5 for lecture on Monday