
COMP 322: Fundamentals of Parallel Programming

Lecture 3: Multiprocessor Scheduling

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 3 January 2021

http://comp322.rice.edu

COMP 322, Spring 2021 (M.Joyner)

One Possible Solution to Worksheet 2
(Reverse Engineering a Computation Graph)

2

1.A();
2.finish { // F1
3. async D();
4. B();
5. E();
6. finish { // F2
7. async H();
8. F();
9. } // F2
10. G();
11.} // F1
12.C();

Observations:
•Any node with out-degree > 1 must be an async

(must have an outgoing spawn edge)
•Any node with in-degree > 1 must be an end-finish

(must have an incoming join edge
•Adding or removing transitive edges does not impact

ordering constraints

COMP 322, Spring 2021 (M.Joyner)

Ordering Constraints and Transitive Edges in a Computation Graph

•The primary purpose of a computation graph is to determine if an ordering constraint exists
between two steps (nodes)
—Observation: Node A must be performed before node B if there is a path of directed edges from A and B

•An edge, X →Y, in a computation graph is said to be transitive if there exists a path of directed
edges from X to Y that does not include the X →Y edge
—Observation: Adding or removing a transitive edge does not change the ordering constraints in a
computation graph

3

COMP 322, Spring 2021 (M.Joyner)

Ideal Parallelism (Recap)

• Define ideal parallelism of
Computation G Graph as the ratio,
WORK(G)/CPL(G)

• Ideal Parallelism only depends
on the computation graph, and is
the speedup that you can obtain
with an unbounded number of
processors

4

1

1

1

4 1 4

1 1 1 1

31 1 1

1 1

1

1
Example:
WORK(G) = 26
CPL(G) = 11
Ideal Parallelism = WORK(G)/CPL(G) = 26/11 ~ 2.36

COMP 322, Spring 2021 (M.Joyner)

What is the critical path length of this parallel computation?

5

1. finish { // F1
2. async A; // Boil water & pasta (10)
3. finish { // F2
4. async B1; // Chop veggies (5)
5. async B2; // Brown meat (10)
6. } // F2
7. B3; // Make pasta sauce (5)
8. } // F1

Step A

Step B1 Step B2

Step B3

COMP 322, Spring 2021 (M.Joyner)

Scheduling of a Computation Graph on a fixed number of processors

Node label = time(N), for all nodes N in the graph

6

NOTE: this schedule achieved a
completion time of 11. Can we
do better?

1

1

1

4 1 4

1 1 1 1

31 1 1

1 1

1

1

A

B

C

D

Start time Proc 1 Proc 2 Proc 3

0 A

1 B

2 C N

3 D N I

4 D N J

5 D N K

6 D Q L

7 E R M

8 F R O

9 G R P

10 H

11 Completion time = 11

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

COMP 322, Spring 2021 (M.Joyner)

Scheduling of a Computation Graph on a fixed number of processors

• Assume that node N takes TIME(N) regardless of which processor it executes on, and that there is
no overhead for creating parallel tasks

• A schedule specifies the following for each node
—START(N) = start time
—PROC(N) = index of processor in range 1...P

such that
—START(i) + TIME(i) <= START(j), for all CG edges from i to j (Precedence constraint)
—A node occupies consecutive time slots in a processor (Non-preemption constraint)
—All nodes assigned to the same processor occupy distinct time slots (Resource constraint)

7

COMP 322, Spring 2021 (M.Joyner)

Greedy Schedule

•A greedy schedule is one that never forces a processor to be idle when one or more nodes are
ready for execution

• A node is ready for execution if all its predecessors have been executed

• Observations
—T1 = WORK(G), for all greedy schedules
—T∞ = CPL(G), for all greedy schedules

• TP(S) = execution time of schedule S for computation graph G on P processors

8

COMP 322, Spring 2021 (M.Joyner)

Lower Bounds on Execution Time of Schedules

•Let TP = execution time of a schedule for computation graph G on P processors
—TP can be different for different schedules, for same values of G and P

•Lower bounds for all greedy schedules
—Capacity bound: TP ≥ WORK(G)/P
—Critical path bound: TP ≥ CPL(G)

•Putting them together
—TP ≥ max(WORK(G)/P, CPL(G))

9

COMP 322, Spring 2021 (M.Joyner)

Upper Bound on Execution Time of Greedy Schedules

10

Start time Proc 1 Proc 2 Proc 3

0 A

1 B

2 C N

3 D N I

4 D N J

5 D N K

6 D Q L

7 E R M

8 F R O

9 G R P

10 H

11

Theorem [Graham ’66].
Any greedy scheduler achieves

TP ≤ WORK(G)/P + CPL(G)

Proof sketch:
Define a time step to be complete if P processors are

scheduled at that time, or incomplete otherwise

complete time steps ≤ WORK(G)/P

incomplete time steps ≤ CPL(G)

COMP 322, Spring 2021 (M.Joyner)

Bounding the Performance of Greedy Schedulers

Combine lower and upper bounds to get
max(WORK(G)/P, CPL(G)) ≤ TP ≤ WORK(G)/P + CPL(G)

Corollary: Any greedy scheduler achieves execution time TP that is within a factor of 2 of the optimal
time (since max(a,b) and (a+b) are within a factor of 2 of each other, for any a ≥ 0,b ≥ 0).

11

COMP 322, Spring 2021 (M.Joyner)

Announcements & Reminders

• No lab next week

• Lab #1 needs to get checked off or committed and pushed by 11:59pm

• HW #1 due on Wednesday, Feb 10th at 11:59pm

• IMPORTANT: Watch video & read handout for topic 1.5 for lecture on Monday

12

