COMP 322: Fundamentals of Parallel Programming

Lecture 7: Map/Reduce

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu
Worksheet #6: Associativity and Commutativity

Recap:
A binary function f is **associative** if $f(f(x,y),z) = f(x,f(y,z))$.
A binary function f is **commutative** if $f(x,y) = f(y,x)$.

Worksheet problems:
1) Claim: A Finish Accumulator (FA) can only be used with operators that are associative and commutative.
 Why? What can go wrong with accumulators if the operator is non-associative or non-commutative?
 You may get different answers in different executions if the operator is non-associative or non-commutative
 e.g., an accumulator can be implemented using one “partial accumulator” per processor core.

2) For each of the following functions, indicate if it is associative and/or commutative.
 a) $f(x,y) = x+y$, for integers x, y, is associative and commutative
 b) $g(x,y) = (x+y)/2$, for integers x, y, is commutative but not associative
 c) $h(s1,s2) = \text{concat}(s1, s2)$ for strings $s1$, $s2$, e.g., $h(“ab","cd”) = “abcd”$, is associative but not commutative
Map/Reduce: Streaming data requirements have skyrocketed

• AT&T processes roughly 30 petabytes per day through its telecommunications network

• Facebook, Amazon, Twitter, etc, have comparable throughputs

• IBM Watson knowledge base stored roughly 4 terabytes of data when winning at Jeopardy
Parallelism enables processing of big data

- Continuously streaming data needs to be processed at least as fast as it is accumulated, or we will never catch up
- The bottleneck in processing very large data sets is dominated by the speed of disk access
- More processors accessing more disks enables faster processing
MapReduce Pattern

• Apply Map function f to user supplied record of key-value pairs

• Compute set of intermediate key/value pairs

• Apply Reduce operation g to all values that share same key to combine derived data properly
 — Often produces smaller set of values

• User supplies Map and Reduce operations in functional model so that the system can parallelize them, and also re-execute them for fault tolerance
MapReduce: Map Step

Input set of key-value pairs

Flattened intermediate set of key-value pairs

Map Reduce: Summary

- Input set is of the form \{ (k_1, v_1), \ldots, (k_n, v_n) \}, where (k_i, v_i) consists of a key, k_i, and a value, v_i.
 - Assume key and value objects are immutable

- Map function f generates sets of intermediate key-value pairs, \(f(k_i, v_i) = \{ (k_1', v_1'), \ldots, (k_m', v_m') \} \). The \(k_m' \) keys can be different from \(k_i \) key in the map function.
 - Assume that a flatten operation is performed as a post-pass after the map operations, so as to avoid dealing with a set of sets.

- Reduce operation groups together intermediate key-value pairs, \(\{ (k', v_j') \} \) with the same \(k' \), and generates a reduced key-value pair, \((k', v'') \), for each such \(k' \), using reduce function g.
Google Uses MapReduce

• **Web crawl**: Find outgoing links from HTML documents, aggregate by target document

• **Google Earth**: Stitching overlapping satellite images to remove seams and to select high-quality imagery

• **Google Maps**: Processing all road segments on Earth and render map tile images that display segments
MapReduce Execution

Fine granularity tasks: many more map tasks than machines

Bucket sort to get same keys together

2000 servers => ≈ 200,000 Map Tasks, ≈ 5,000 Reduce tasks
Word Count Example

In: set of words
Out: set of (word,count) pairs

Algorithm:
1. For each in word W, emit $(W, 1)$ as a key-value pair (map step).
2. Group together all key-value pairs with the same key (reduce step).
3. Perform a sum reduction on all values with the same key (reduce step).

- All map operations in step 1 can execute in parallel with only local data accesses.
- Step 2 may involve a major reshuffle of data as all key-value pairs with the same key are grouped together.
- Step 3 performs a standard reduction algorithm for all values with the same key, and in parallel for different keys.
Pseudocode for Word Count

1. `<String, Integer> map(String inKey, String inValue):
2. // inKey: document name
3. // inValue: document contents
4. for each word w in inValue:
5. emitIntermediate(w, 1) // Produce count of words
6.
7. <Integer> reduce(String outKey, Iterator<Integer> values):
8. // outKey: a word
9. // values: a list of counts
10. Integer result = 0
11. for each v in values:
12. result += v // the value from map was an integer
13. emit(result)
Example Execution of Word Count Program

Distribute

- **Map 1**: that that is
 - is 1, that 2
- **Map 2**: is that that
 - is 1, that 2
- **Map 3**: is not is not
 - is 2, not 2
- **Map 4**: is that it it is
 - is 2, it 2, that 1

Shuffle

- **Reduce 1**: is 1,1,2,2
 - it 2
 - is 6; it 2
- **Reduce 2**: that 2,2,1
 - not 2
 - not 2; that 5

Collect

- is 6; it 2; not 2; that 5
Announcements & Reminders

• IMPORTANT:
 — Watch video & read handout for topic 2.5 and 2.6 for Wednesday’s lecture
• HW1 is due Wednesday, Feb 10th by 11:59pm
• Lab 2 is this week (Tu at 1:30pm, Th at 4:50pm)
• See Office Hours link on course web site for latest office hours schedule.
Analyze the total WORK and CPL for the Map reduce example:

- Assume that each Map step has WORK = number of input words, and CPL=1
- Assume that each Reduce step has WORK = number of input word-count pairs, and CPL = \(\log_2(\text{# occurrences for input word with largest # pairs}) \)