
COMP 322: Fundamentals of Parallel Programming

Lecture 26: Java Locks

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 26 April 2021

http://comp322.rice.edu

COMP 322, Spring 2021 (M.Joyner)

Worksheet #25: Bounded Buffer

Consider the case when multiple threads call insert() and remove() methods concurrently for a
single BoundedBuffer instance with SIZE >= 1.

1) Can you provide an example in which the wait set includes a thread waiting at line 2 in insert()
and a thread waiting at line 11 in remove(), in slide 8? If not, why not?

2) How would the code behave if all wait/notify calls (lines 2, 6, 11, 15) were removed from the
insert() and remove() methods in slide 8?

2

COMP 322, Spring 2021 (M.Joyner)

What if you want to wait for shared state to satisfy a desired
property? (Bounded Buffer Example)

1. public synchronized void insert(Object item) { // producer
2. // TODO: wait till count < BUFFER SIZE
3. ++count;
4. buffer[in] = item;
5. in = (in + 1) % BUFFER SIZE;
6. // TODO: notify consumers that an insert has been performed
7. }

9. public synchronized Object remove() { // consumer
10. Object item;
11. // TODO: wait till count > 0
12. --count;
13. item = buffer[out];
14. out = (out + 1) % BUFFER SIZE;
15. // TODO: notify producers that a remove() has been performed
16. return item;
17.}

3

COMP 322, Spring 2021 (M.Joyner)

Locks

4

Example of hand-over-hand locking:
• L1.lock() … L2.lock() … L1.unlock() … L3.lock() … L2.unlock() ….

COMP 322, Spring 2021 (M.Joyner)

java.util.concurrent.locks.Lock interface
1. interface Lock {

2. // key methods

3. void lock(); // acquire lock

4. void unlock(); // release lock

5. boolean tryLock(); // Either acquire lock (returns true), or return false if lock is not obtained.

6. // A call to tryLock() never blocks!

7.

8. Condition newCondition(); // associate a new condition

9. }

java.util.concurrent.locks.Lock interface is implemented by java.util.concurrent.locks.ReentrantLock class

5

COMP 322, Spring 2021 (M.Joyner)

Simple ReentrantLock() example

6

==> Importance of including call to unlock() in finally clause!

COMP 322, Spring 2021 (M.Joyner)

java.util.concurrent.locks.condition interface

• Can be allocated by calling ReentrantLock.newCondition()
• Supports multiple condition variables per lock
• Methods supported by an instance of condition

—void await() // NOTE: like wait() in synchronized statement
– Causes current thread to wait until it is signaled or interrupted
– Variants available with support for interruption and timeout

—void signal() // NOTE: like notify() in synchronized statement
– Wakes up one thread waiting on this condition

—void signalAll() // NOTE: like notifyAll() in synchronized statement
– Wakes up all threads waiting on this condition

• For additional details see
—http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/locks/Condition.html

7

http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/locks/Condition.html

COMP 322, Spring 2021 (M.Joyner)

BoundedBuffer Example using Two Conditions:
full and empty

1. class BoundedBuffer {
2. final Lock lock = new ReentrantLock();
3. final Condition full = lock.newCondition();
4. final Condition empty = lock.newCondition();
5.
6. final Object[] items = new Object[100];
7. int putptr, takeptr, count;
8.
9. . . .

8

COMP 322, Spring 2021 (M.Joyner)

BoundedBuffer Example using Two Conditions:
full and empty (contd)

1. public void put(Object x) throws InterruptedException
2. {
3. lock.lock();
4. try {
5. while (count == items.length) full.await();
6. items[putptr] = x;
7. if (++putptr == items.length) putptr = 0;
8. ++count;
9. empty.signal();
10. } finally {
11. lock.unlock();
12. }
13. }

9

COMP 322, Spring 2021 (M.Joyner)

BoundedBuffer Example using Two Conditions:
full and empty (contd)

1. public Object take() throws InterruptedException
2. {
3. lock.lock();
4. try {
5. while (count == 0) empty.await();
6. Object x = items[takeptr];
7. if (++takeptr == items.length) takeptr = 0;
8. --count;
9. full.signal();
10. return x;
11. } finally {
12. lock.unlock();
13. }
14. }

10

COMP 322, Spring 2021 (M.Joyner)

Reading vs Writing

• Recall that the use of synchronization is to protect interfering accesses
—Concurrent reads of same memory: Not a problem
—Concurrent writes of same memory: Problem
—Concurrent read & write of same memory: Problem

So far:
—If concurrent write/write or read/write might occur, use synchronization to ensure one-thread-at-a-time

But:
—This is unnecessarily conservative: we could still allow multiple simultaneous readers (as in object-

based isolation)
Consider a hashtable with one coarse-grained lock

—Only one thread can perform operations at a time
But suppose:

—There are many simultaneous lookup operations and insert operations are rare

11

COMP 322, Spring 2021 (M.Joyner)

java.util.concurrent.locks.ReadWriteLock interface
interface ReadWriteLock {
 Lock readLock();
 Lock writeLock();

 }

• Even though the interface appears to just define a pair of locks, the semantics of the pair of locks is coupled as
follows
—Case 1: a thread has successfully acquired writeLock().lock()

– No other thread can acquire readLock() or writeLock()

—Case 2: no thread has acquired writeLock().lock()
– Multiple threads can acquire readLock()
– No other thread can acquire writeLock()

• java.util.concurrent.locks.ReadWriteLock interface is implemented by
java.util.concurrent.locks.ReadWriteReentrantLock class

12

COMP 322, Spring 2021 (M.Joyner)

Hashtable Example
class Hashtable<K,V> {
 …
 // coarse-grained, one lock for table
 ReadWriteLock lk = new ReentrantReadWriteLock();
 V lookup(K key) {
 int bucket = hasher(key);
 lk.readLock().lock(); // only blocks writers
 … read array[bucket] …
 lk.readLock().unlock();
 }
 void insert(K key, V val) {
 int bucket = hasher(key);
 lk.writeLock().lock(); // blocks readers and writers
 … write array[bucket] …

 lk.writeLock().unlock();
 }
}

13

COMP 322, Spring 2021 (M.Joyner)

Announcements & Reminders

•Hw 3 - entire written + programming (Checkpoint #2) is due today at 11:59pm
•Lab 6 is due tomorrow at 12pm (noon)
•No lab this week
•Quiz for Unit 6 is due Monday, April 12th at 11:59pm
•Hw 4 will be available today

—Checkpoint #1 is due Monday, April 19th at 11:59pm
—Entire written + programming (Checkpoint #2) is due Wednesday, April 28th at 11:59pm

14

COMP 322, Spring 2021 (M.Joyner)

Worksheet #26: Use of trylock()
Rewrite the transferFunds() method below to use j.u.c. locks with calls to tryLock (see slide 5)
instead of synchronized.

Your goal is to write a correct implementation that never deadlocks, unlike the buggy version below
(which can deadlock).

Assume that each Account object already contains a reference to a ReentrantLock object dedicated
to that object e.g., from.lock() returns the lock for the from object. Sketch your answer using
pseudocode.

1. public void transferFunds(Account from, Account to, int amount) {
2. synchronized (from) {
3. synchronized (to) {
4. from.subtractFromBalance(amount);
5. to.addToBalance(amount);
6. }
7. }
8. }

15

