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Worksheet #25: Bounded Buffer

Consider the case when multiple threads call insert() and remove() methods concurrently for a
single BoundedBuffer instance with SIZE >= 1.

1) Can you provide an example in which the wait set includes a thread waiting at line 2 in insert()
and a thread waiting at line 11 in remove(), in slide 8? If not, why not?

2) How would the code behave if all wait/notify calls (lines 2, 6, 11, 15) were removed from the
insert() and remove() methods in slide 8?
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What if you want to wait for shared state to satisfy a desired
property? (Bounded Buffer Example)

. public synchronized void insert(Object item) { // producer

// TODO: wait till count < BUFFER SIZE

++count;

buffer[in] = item;

in = (in + 1) % BUFFER SIZE;

// TODO: notify consumers that an insert has been performed
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9. public synchronized Object remove() { // consumer

10. Object titem;

11. // TODO: watit till count > 0

12. --count;

13. item = buffer[out];

14. out = (out + 1) % BUFFER SIZE;

15. // TODO: notify producers that a remove() has been performed
16. return i1tem;

17.}
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Locks

Use of monitor synchronization is just fine for most
applications, but it has some shortcomings

Single wait-set per lock

No way to interrupt or time-out when waiting for a lock

Locking must be block-structured
Inconvenient to acquire a variable number of locks at once

Advanced techniques, such as hand-over-hand locking,
are not possible

Lock objects address these limitations
But harder to use: Need £inally block to ensure release
S0 If you don't need them, stick with synchronized

Example of hand-over-hand locking:
* L1.lock() ... L2.lock() ... L1.unlock() ... L3.lock() ... L2.unlock() ....
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java.util.concurrent.locks.Lock interface

interface Lock {
// key methods
void lock(); // acquire lock

void unlock(); // release lock
/I A call to tryLock() never blocks!

1.
2
3
4
5. boolean tryLock(); // Either acquire lock (returns true), or return false if lock is not obtained.
6
7
8. Condition newCondition(); // associate a new condition

9.

J

java.util.concurrent.locks.Lock interface is implemented by java.util.concurrent.locks.ReentrantLock class
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Simple ReentrantLock() example

Used extensively within java.util.concurrent

final Lock lock = new Reentrantlock () ;

lock.lock () ;

try {
// perform operations protected by lock

}

catch (Exception ex) {
// restore invariants & rethrow

}
finally {

lock.unlock () ;
}

Must manually ensure lock is released

==> |mportance of including call to unlock() in finally clause!
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java.util.concurrent.locks.condition interface

 Can be allocated by calling ReentrantLock.newCondition()
o Supports multiple condition variables per lock

* Methods supported by an instance of condition
—void await() // NOTE: like wait() in synchronized statement
— Causes current thread to wait until it is signaled or interrupted
— Variants available with support for interruption and timeout
—uvoid signal() // NOTE: like notify() in synchronized statement
— Wakes up one thread waiting on this condition
—void signalAll() // NOTE: like notifyAll() in synchronized statement
— Wakes up all threads waiting on this condition

o For additional details see
—http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/locks/Condition.html
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http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/locks/Condition.html
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BoundedBuffer Example using Two Conditions:
full and empty

class BoundedBuffer {

. final Lock lock = new ReentrantLock();
. final Condition full = lock.newCondition();
. final Condition empty = lock.newCondition();

. final Object[] items = new Object[100];

int putptr, takeptr, count;
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BoundedBuffer Example using Two Conditions:
full and empty (contd)

. public void put(Object x) throws InterruptedException
- A

lock.lock();

try {
while (count == items.length) full.await();
items[putptr] = x;
If (++putptr == items.length) putptr = O;
++count;
empty.signal();
} finally {

11. lock.unlock();
12. }
13. }
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BoundedBuffer Example using Two Conditions:
full and empty (contd)

1. public Object take() throws InterruptedException
2.

3. lock.lock();

4. try{

5. while (count == 0) empty.await();

6 Object x = items[takeptr];

7 if (++takeptr == items.length) takeptr = 0O;

8

9

1

--count;
full.signal();
0. return X;
11.  }finally {
12. lock.unlock();
13. }
14, }
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Reading vs Writing

 Recall that the use of synchronization is to protect interfering accesses

—Concurrent reads of same memory: Not a problem

—Concurrent writes of same memory: Problem

—Concurrent read & write of same memory: Problem
So far:

—If concurrent write/write or read/write might occur, use synchronization to ensure one-thread-at-a-time
But:

—This is unnecessarily conservative: we could still allow multiple simultaneous readers (as in object-
based isolation)

Consider a hashtable with one coarse-grained lock
—Only one thread can perform operations at a time

But suppose:
—There are many simultaneous 1 ookup operations and insert operations are rare
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java.util.concurrent.locks.ReadWriteLock interface

interface ReadWritelock {
Lock readlLock () ;
Lock writelLock () ;

J

e Even though the interface appears to just define a pair of locks, the semantics of the pair of locks is coupled as
follows
—Case 1: a thread has successfully acquired writeLock().lock()
— No other thread can acquire readLock() or writeLock()

—Case 2: no thread has acquired writeLock().lock()
— Multiple threads can acquire readLock()
— No other thread can acquire writeLock()

e java.util.concurrent.locks.ReadWriteLock interface is implemented by
Java.util.concurrent.locks.ReadWriteReentrantLock class
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Hashtable Example

class Hashtable<K,V> {

// coarse-grained, one lock for table
ReadWriteLock lk = new ReentrantReadWriteLock();
V lookup(K key) {
int bucket = hasher(key);
lk.readLock().lock(); // only blocks writers
. read array[bucket] ..
lk.readLock () .unlock();
}
void 1insert(K key, V val) {
int bucket = hasher(key);
lk.writeLock().lock(); // blocks readers and writers
. write array[bucket] ..
lk.writeLock().unlock();

13 COMP 322, Spring 2021 (M.Joyner)

.-.98
2



14

Announcements & Reminders

« Hw 3 - entire written + programming (Checkpoint #2) is due today at 11:59pm
e Lab 6 is due tomorrow at 12pm (noon)
 No lab this week

e Quiz for Unit 6 i

s due Monday, April 12th at 11:59pm

* HW 4 will be available today

[

—Checkpoint #

1 Is due Monday, April 19th at 11:59pm

—Entire written + programming (Checkpoint #2) is due Wednesday, April 28th at 11:59pm
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Worksheet #26: Use of trylock()

Rewrite the transferFunds() method below to use j.u.c. locks with calls to tryLock (see slide 5)
instead of synchronized.

Your goal is to write a correct implementation that never deadlocks, unlike the buggy version below
(which can deadlock).

Assume that each Account object already contains a reference to a ReentrantLock object dedicated

to that object e.g., from.lock() returns the lock for the from object. Sketch your answer using
pseudocode.

public void transferFunds (Account from, Account to, 1nt amount) {
synchronized (from) {
synchronized (to) {
from.subtractFromBalance (amount) ;
to.addToBalance (amount) ;

O Nk w0~
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