COMP 322: Fundamentals of Parallel Programming

Lecture 26: Java Locks

Mack Joyner
mjoyner@rice.edu

http:.//comp322.rice.edu

COMP 322 Lecture 26 April 2021

http://comp322.rice.edu

Worksheet #25: Bounded Buffer

Consider the case when multiple threads call insert() and remove() methods concurrently for a
single BoundedBuffer instance with SIZE >= 1.

1) Can you provide an example in which the wait set includes a thread waiting at line 2 in insert()
and a thread waiting at line 11 in remove(), in slide 8? If not, why not?

2) How would the code behave if all wait/notify calls (lines 2, 6, 11, 15) were removed from the
insert() and remove() methods in slide 8?

COMP 322, Spring 2021 (M.Joyner)

What if you want to wait for shared state to satisfy a desired
property? (Bounded Buffer Example)

. public synchronized void insert(Object item) { // producer

// TODO: wait till count < BUFFER SIZE

++count;

buffer[in] = item;

in = (in + 1) % BUFFER SIZE;

// TODO: notify consumers that an insert has been performed

NO OGS WN -

.}

9. public synchronized Object remove() { // consumer

10. Object titem;

11. // TODO: watit till count > 0

12. --count;

13. item = buffer[out];

14. out = (out + 1) % BUFFER SIZE;

15. // TODO: notify producers that a remove() has been performed
16. return i1tem;

17.}

COMP 322, Spring 2021 (M.Joyner)

Locks

Use of monitor synchronization is just fine for most
applications, but it has some shortcomings

Single wait-set per lock

No way to interrupt or time-out when waiting for a lock

Locking must be block-structured
Inconvenient to acquire a variable number of locks at once

Advanced techniques, such as hand-over-hand locking,
are not possible

Lock objects address these limitations
But harder to use: Need £inally block to ensure release
S0 If you don't need them, stick with synchronized

Example of hand-over-hand locking:
* L1.lock() ... L2.lock() ... L1.unlock() ... L3.lock() ... L2.unlock()

COMP 322, Spring 2021 (M.Joyner)

java.util.concurrent.locks.Lock interface

interface Lock {
// key methods
void lock(); // acquire lock

void unlock(); // release lock
/I A call to tryLock() never blocks!

1.
2
3
4
5. boolean tryLock(); // Either acquire lock (returns true), or return false if lock is not obtained.
6
7
8. Condition newCondition(); // associate a new condition

9.

J

java.util.concurrent.locks.Lock interface is implemented by java.util.concurrent.locks.ReentrantLock class

COMP 322, Spring 2021 (M.Joyner)

.-}8
2

Simple ReentrantLock() example

Used extensively within java.util.concurrent

final Lock lock = new Reentrantlock () ;

lock.lock () ;

try {
// perform operations protected by lock

}

catch (Exception ex) {
// restore invariants & rethrow

}
finally {

lock.unlock () ;
}

Must manually ensure lock is released

==> |mportance of including call to unlock() in finally clause!

COMP 322, Spring 2021 (M.Joyner)

java.util.concurrent.locks.condition interface

 Can be allocated by calling ReentrantLock.newCondition()
o Supports multiple condition variables per lock

* Methods supported by an instance of condition
—void await() // NOTE: like wait() in synchronized statement
— Causes current thread to wait until it is signaled or interrupted
— Variants available with support for interruption and timeout
—uvoid signal() // NOTE: like notify() in synchronized statement
— Wakes up one thread waiting on this condition
—void signalAll() // NOTE: like notifyAll() in synchronized statement
— Wakes up all threads waiting on this condition

o For additional details see
—http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/locks/Condition.html

COMP 322, Spring 2021 (M.Joyner)

http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/locks/Condition.html

1.
2
3
4
D.
6
/
38
9

BoundedBuffer Example using Two Conditions:
full and empty

class BoundedBuffer {

. final Lock lock = new ReentrantLock();
. final Condition full = lock.newCondition();
. final Condition empty = lock.newCondition();

. final Object[] items = new Object[100];

int putptr, takeptr, count;

COMP 322, Spring 2021 (M.Joyner)

—h
O

© 0 N OO~ Wb

BoundedBuffer Example using Two Conditions:
full and empty (contd)

. public void put(Object x) throws InterruptedException
- A

lock.lock();

try {
while (count == items.length) full.await();
items[putptr] = x;
If (++putptr == items.length) putptr = O;
++count;
empty.signal();
} finally {

11. lock.unlock();
12. }
13. }

COMP 322, Spring 2021 (M.Joyner)

BoundedBuffer Example using Two Conditions:
full and empty (contd)

1. public Object take() throws InterruptedException
2.

3. lock.lock();

4. try{

5. while (count == 0) empty.await();

6 Object x = items[takeptr];

7 if (++takeptr == items.length) takeptr = 0O;

8

9

1

--count;
full.signal();
0. return X;
11. }finally {
12. lock.unlock();
13. }
14, }

COMP 322, Spring 2021 (M.Joyner)

11

Reading vs Writing

 Recall that the use of synchronization is to protect interfering accesses

—Concurrent reads of same memory: Not a problem

—Concurrent writes of same memory: Problem

—Concurrent read & write of same memory: Problem
So far:

—If concurrent write/write or read/write might occur, use synchronization to ensure one-thread-at-a-time
But:

—This is unnecessarily conservative: we could still allow multiple simultaneous readers (as in object-
based isolation)

Consider a hashtable with one coarse-grained lock
—Only one thread can perform operations at a time

But suppose:
—There are many simultaneous 1 ookup operations and insert operations are rare

COMP 322, Spring 2021 (M.Joyner)

java.util.concurrent.locks.ReadWriteLock interface

interface ReadWritelock {
Lock readlLock () ;
Lock writelLock () ;

J

e Even though the interface appears to just define a pair of locks, the semantics of the pair of locks is coupled as
follows
—Case 1: a thread has successfully acquired writeLock().lock()
— No other thread can acquire readLock() or writeLock()

—Case 2: no thread has acquired writeLock().lock()
— Multiple threads can acquire readLock()
— No other thread can acquire writeLock()

e java.util.concurrent.locks.ReadWriteLock interface is implemented by
Java.util.concurrent.locks.ReadWriteReentrantLock class

12 COMP 322, Spring 2021 (M.Joyner)

Hashtable Example

class Hashtable<K,V> {

// coarse-grained, one lock for table
ReadWriteLock lk = new ReentrantReadWriteLock();
V lookup(K key) {
int bucket = hasher(key);
lk.readLock().lock(); // only blocks writers
. read array[bucket] ..
lk.readLock () .unlock();
}
void 1insert(K key, V val) {
int bucket = hasher(key);
lk.writeLock().lock(); // blocks readers and writers
. write array[bucket] ..
lk.writeLock().unlock();

13 COMP 322, Spring 2021 (M.Joyner)

.-.98
2

14

Announcements & Reminders

« Hw 3 - entire written + programming (Checkpoint #2) is due today at 11:59pm
e Lab 6 is due tomorrow at 12pm (noon)
 No lab this week

e Quiz for Unit 6 i

s due Monday, April 12th at 11:59pm

* HW 4 will be available today

[

—Checkpoint #

1 Is due Monday, April 19th at 11:59pm

—Entire written + programming (Checkpoint #2) is due Wednesday, April 28th at 11:59pm

COMP 322, Spring 2021 (M.Joyner)

15

Worksheet #26: Use of trylock()

Rewrite the transferFunds() method below to use j.u.c. locks with calls to tryLock (see slide 5)
instead of synchronized.

Your goal is to write a correct implementation that never deadlocks, unlike the buggy version below
(which can deadlock).

Assume that each Account object already contains a reference to a ReentrantLock object dedicated

to that object e.g., from.lock() returns the lock for the from object. Sketch your answer using
pseudocode.

public void transferFunds (Account from, Account to, 1nt amount) {
synchronized (from) {
synchronized (to) {
from.subtractFromBalance (amount) ;
to.addToBalance (amount) ;

O Nk w0~

COMP 322, Spring 2021 (M.Joyner)

