
COMP 322 Spring 2022

Lab 11: Loop-level Parallelism
Instructors: Zoran Budimlić, Mack Joyner

Course Wiki: http://comp322.rice.edu

Staff Email: comp322-staff@mailman.rice.edu

Goals for this lab

• Experimentation with Loop-Level Parallelism and Chunking in Image Convolution

• Performance Evaluation of Loop-Level Parallelism on NOTS

Downloads

As with previous labs, the provided template project is accessible through your private GitHub repo at:
https://classroom.github.com/a/fuV9bNiV

For instructions on checking out this repo through IntelliJ or through the command-line, please see the Lab
1 handout. The below instructions will assume that you have already checked out the lab11 folder, and that
you have imported it as a Maven Project in IntelliJ.

1 Image Kernels

The code provided in Lab11.java offers a sequential implementation of a convolution kernel which applies
a transformation to an image. Your task for this lab is to make this sequential implementation parallel and
measure its real world speedup on the NOTS cluster.

You should start by gaining an understanding of the application you will be parallelizing today. This website
provides an excellent introduction to convolutional image kernels.

Next, try running the provided tests using the provided sequential code. These tests read the image at
src/main/resources/kobe.jpg, apply two different transformations to it, and write the output of those
transformations to src/main/resources/kobe.1.jpg and src/main/resources/kobe.2.jpg. The first
transformation highlights edges in the image. The second transformation brightens the image. After running
the provided tests you should be able to open kobe.jpg, kobe.1.jpg, and kobe.2.jpg next to each other
and clearly see the results of the applied transformation.

You are now ready for the first part of the lab assignment, which is to efficiently parallelize the kernel
in Lab11.convolve, by using the forall or forallChunked constructs in HJlib. (You are welcome to
implement chunking by hand instead of using forallChunked.) It may help you to know that the bounds
for the four loops are determined by the following values in the test case: inputWidth = 3280, inputHeight
= 4928, and kernelWidth = kernelHeight = 3.

In order to do this, you will have to take a look into the sequential computation of the provided code. Which
loops (i, j, kw, kh) are data-parallel and can be parallelized?

Once you have efficiently parallelized this kernel on your laptop, you should submit it to NOTS manually
using the process detailed below (i.e. by transferring your changed Lab 11 to the cluster using scp/sftp/GIT
and then submitting using sbatch).

1 of 2

http://comp322.rice.edu
mailto:comp322-staff@mailman.rice.edu
https://classroom.github.com/a/fuV9bNiV
http://setosa.io/ev/image-kernels/


COMP 322
Spring 2022

Lab 11: Loop-level Parallelism

2 Demonstrating and submitting your lab work

For this lab, you will need to demonstrate and submit your work before Wednesday, April 13th at 4:30pm
as follows.

1. Show your work to an instructor or TA to get credit for this lab. They will want to see your files
submitted to GitHub in your web browser and the passing unit tests on NOTS.

2. Check that all the work for today’s lab is in your lab11 directory by opening https://classroom.

github.com/a/fuV9bNiV in your web browser and checking that your changes have appeared.

2 of 2

https://classroom.github.com/a/fuV9bNiV
https://classroom.github.com/a/fuV9bNiV

	Image Kernels
	Demonstrating and submitting in your lab work

