
COMP 322 Spring 2023

Homework 3: due by 11:59pm on Wednesday, March 29th, 2022

(Total: 100 points)
Mack Joyner

Commit all work to the github classroom hw3 repo at https://classroom.github.com/a/4ir64HSD
that we created for you. In case of problems committing your files, please contact the teaching
staff at comp322-staff@mailman.rice.edu before the deadline to get help resolving your issues.

Your solution to the written assignment should be submitted as a PDF file named hw3 written.pdf

in your github classroom hw3 top level directory. This is important — you will be penalized
5 points if you place the file in some other folder or with some other name. The PDF file can
be created however you choose. If you scan handwritten text, make sure that the writing is
clearly legible in the scanned copy. Your solution to the programming assignment should be
submitted in the appropriate location in the hw3 directory.

The slip day policy for COMP 322 is similar to that of COMP 321. All students will be given
3 slip days to use throughout the semester. When you use a slip day, you will receive up to 24
additional hours to complete the assignment. You may use these slip days in any way you see
fit (3 days on one assignment, 1 day each on 3 assignments, etc.). If you plan to use a slip day,
you need to say so in an github committed README.md file before the deadline. You should
specifically mention how many slip days you plan to use. The README.md file should be
placed in the top level directory (e.g. hw3). Other than slip days, no extensions will be given
unless there are exceptional circumstances (such as severe sickness, not because you have too
much other work). Such extensions must be requested and approved by the instructor (via
e-mail, phone, or in person) before the due date for the assignment. Last minute requests are
likely to be denied.

If you see ambiguity or inconsistency in a question, please seek clarification on Piazza (remem-
ber not to share homework solutions in public posts) or from the teaching staff. If it is not
resolved through those channels, you should state the ambiguity/inconsistency that you see,
as well as any assumptions that you make to resolve it.

Honor Code Policy: All submitted homework is expected to be the result of your individual effort. You are
free to discuss course material and approaches to problems with your other classmates, the teaching assistants
and the instructors, but you should never misrepresent someone else’s work as your own. If you use any
material from external sources, you must provide proper attribution.

1 Written Assignment (30 points total)

As mentioned earlier, your solution to the written assignment should be submitted as a PDF file named
hw3 written.pdf in the hw3 directory.

1.1 Amdahl’s Law (15 points)

In Lecture 13 (Topic 1.5), you will learn the following statement of Amdahl’s Law:

If q ≤ 1 is the fraction of WORK in a parallel program that must be executed sequentially, then
the best speedup that can be obtained for that program, even with an unbounded number of
processors, is Speedup ≤ 1/q.

Now, consider the following generalization of Amdahl’s Law. Let q1 be the fraction of WORK in a parallel
program that must be executed sequentially, q2 be the fraction of WORK that can use at most 2 processors,
and (1− q1 − q2) the fraction of WORK that can use an unbounded number of processors. The fractions of

1 of 7

https://classroom.github.com/a/4ir64HSD
comp322-staff@mailman.rice.edu

COMP 322
Spring 2023

Homework 3: due by 11:59pm on Wednesday, March 29th, 2022

(Total: 100 points)

WORK represented by q1, q2, and (1− q1 − q2) are disjoint, and cannot be overlapped with each other in a
parallel execution. Your assignment is is as follows:

1. (10 points) Provide the best possible (smallest) upper bound on the Speedup as a function of q1 and q2.

2. (5 points) Explain your answer, and justify why it is a correct upper bound. Use the cases when q1 = 0,
q2 = 0, q1 = 1 or q2 = 1 to explain why your bound is correct.

Hints:

• As with Amdahl’s Law, your answer should not include the number of processors, P . It should be an
upper bound that applies to all values of P .

• To check your answer, consider the cases when q1 or q2 are equal to 0 or 1.

1.2 Finish Accumulators (15 points)

Consider the pseudocode shown below in Listing 1 for a Parallel Search algorithm that is intended to compute
Q, the number of occurrences of the pattern array in the text array. What possible values can variables
count0, count1, and count2 contain at line 16? Write your answers in terms of M , N , and Q, and explain
your answers.

1 // Assume that count0 , count1 , count2 are dec l a r ed
2 // as ob j e c t / s t a t i c f i e l d s o f type i n t
3 . . .
4 count0 = 0 ;
5 accumulator a = new accumulator (SUM, int . class) ;
6 f in ish (a) {
7 for (int i = 0 ; i <= N − M; i++)
8 async {
9 int j ;

10 for (j = 0 ; j < M; j++) i f (t ex t [i+j] != pattern [j]) break ;
11 i f (j == M) { count0++; a .put (1) ; } // found at o f f s e t i
12 count1 = a . get () ;
13 } // for−async
14 } // f i n i s h
15 count2 = a . get () ;
16 // Pr int count0 , count1 , count2

Listing 1: Parallel Search using Finish Accumulators

Hints based on common errors from past years: Be sure to include exactly all possible values for the variables,
not a subset or superset of the values. Remember to use Q in your answers, even though Q can have different
values for different values of the text[] and pattern[] arrays (even for the same values of M and N .)
Finally, don’t forget to explain your answers.

2 Programming Assignment (70 points)

2.1 Habanero-Java Library (HJ-lib) Setup

See the Lab 1 handout for instructions on HJ-lib installation for use in this homework.

2 of 7

COMP 322
Spring 2023

Homework 3: due by 11:59pm on Wednesday, March 29th, 2022

(Total: 100 points)

2.2 Pairwise Sequence Alignment

This homework focuses on computing the optimal score for pairwise sequence alignment, not on the alignment
itself. Though a biologist is ultimately interested in seeing the alignment, there are many applications
where the score alone is of interest. For example, in multiple sequence alignment, the most commonly used
approach is called progressive alignment, where an evolutionary tree is first built based on the scores of
pairwise alignments, and then the tree is used as a guide for doing the multiple sequence alignment. In
this case, the pairwise alignments are performed solely for the sake of obtaining scores, and the alignments
themselves are not needed. However, it is important to compute the scores as quickly as possible when
exploring alignments of large DNA sequences.

Let X and Y be two sequences over alphabet Σ (for DNA sequences, Σ = {A,C, T,G}). An alignment of X
and Y is two sequences X ′ and Y ′ over the alphabet Σ ∪ {−}, where X ′ is formed from X by adding only
dashes to it, and Y ′ is formed from Y by adding only dashes to it, such that

1 |X ′| = |Y ′| i.e., X ′ and Y ′ have the same size,

2 there does not exist an i such that X ′[i] = Y ′[i] = −

This alignment is also referred to as global pairwise alignment (as opposed to local pairwise alignment, which
is used to align selected regions of sequences X and Y).

Sequence alignment helps biologists make inferences about the evolutionary relationship between two DNA
sequences. Aligning two sequences amounts to “reverse engineering” the evolutionary process that acted
upon the two sequences and modified them so that their characters and their lengths differ. As an example,
one possible alignment of the two sequences X = ACCT and Y = TACGGT is as follows:

X ′ = - A C - C T
Y ′ = T A C G G T

As you may imagine, there may be multiple alignments for the same pair of sequences. For example, a trivial
alternate alignment for X and Y is as follows:

X ′′ = A C C T - - - - - -
Y ′′ = - - - - T A C G G T

2.3 Scoring in Pairwise Sequence Alignment: Optimality Criterion

As discussed above, a number of alignments exist for a given pair of sequences; therefore, we define a scoring
scheme that gives higher scores to “better” alignments. Once the scoring scheme is defined, we seek an
alignment with the highest score (among all feasible alignments). For DNA, a scoring scheme is given by a
5×5 matrix M , where for p, q ∈ {A,C, T,G}, Mp,q specifies the score for aligning p in sequence X ′ with q in
sequence Y ′, Mp,− denotes the penalty for aligning p in sequence X ′ with a dash in sequence Y ′, and M−,q
denotes the penalty for aligning q in sequence Y ′ with a dash in sequence X ′. Assuming |X ′| = |Y ′| = k,
the score of the alignment is

k∑
i=1

MX′[i],Y ′[i]. (1)

For this assignment, we will assume the following scoring scheme: Mp,p = 5, Mp,q = 2 (for p 6= q),
Mp,− = −2 and M−,q = −4.

For this scoring scheme. the score of the (X ′, Y ′) alignment in Section 2.2 is

M−,T + MA,A + MC,C + M−,G + MC,G + MT,T = (−4) + 5 + 5 + (−4) + 2 + 5 = 9

and the score of the (X ′′, Y ′′) alignment is 4×Mp,− + 6×M−,q = −32.

3 of 7

COMP 322
Spring 2023

Homework 3: due by 11:59pm on Wednesday, March 29th, 2022

(Total: 100 points)

2.4 Sequential Algorithm to compute the Optimal Scoring for Pairwise Sequence Alignment

In this problem, we introduce a sequential dynamic programming algorithm (called the Smith-Waterman
algorithm) to compute the Optimal Scoring for Pairwise Sequence Alignment. For two sequences X and Y
of lengths m and n, respectively, denote by S[i, j], 0 ≤ i ≤ m and 0 ≤ j ≤ n, the score of the best alignment
of the first i characters of X with the first j characters of Y . The boundary values are, S[i, 0] = i ∗Mp,−
and S[0, j] = j ∗M−,p. It has been shown that this optimal scoring can be defined as follows ∀i, j ≥ 1:

S[i, j] = max

 S[i− 1, j − 1] + MX[i],Y [j]

S[i− 1, j] + MX[i],−
S[i, j − 1] + M−,Y [j]

. (2)

The above definition directly leads to a sequential dynamic programming algorithm that can be implemented
as shown in Listing 2. Assume that the input sequences are represented as Java strings, and the scoring
matrix, S, is represented as a 2-dimensional array of size (X.length()+1) × (Y.length()+1). After the
algorithm terminates, the final score is available in S[X.length()][Y.length()].

The dependence structure of the iterations in Listing 2 is shown in Figure 1. The cells in the figure correspond
to S[i, j] values, and the arrows show the dependences among the S[i, j] computations.

1 for (i = 1 ; i <= xLength ; i++)
2 for (j = 1 ; j <= yLength ; i++) {
3 int i = point . get (0) ;
4 int j = po int . get (1) ;
5 char xChar = X. charAt (i −1);
6 char YChar = Y. charAt (j −1);
7 int diagScore = S [i −1] [j −1] + M[charMap (xChar)] [charMap (YChar)] ;
8 int topColScore = S [i −1] [j] + M[charMap (xChar)] [0] ;
9 int l e f tRowScore = S [i] [j −1] + M[0] [charMap (YChar)] ;

10 S [i] [j] = Math .max(diagScore , Math .max(leftRowScore , topColScore)) ;
11 }
12 int f i n a l S c o r e = S [xLength] [yLength] ;

Listing 2: Sequential implementation of Smith-Waterman Algorithm for Optimal Scoring for Pairwise Se-
quence Alignment

Figure 1: Dependences in Pairwise Sequence Alignment

This homework focuses on computing the optimal score for pairwise sequence alignment, not on the alignment
itself. Though a biologist is ultimately interested in seeing the alignment, there are many applications
where the score alone is of interest. For example, in multiple sequence alignment, the most commonly used
approach is called progressive alignment, where an evolutionary tree is first built based on the scores of
pairwise alignments, and then the tree is used as a guide for doing the multiple sequence alignment. In
this case, the pairwise alignments are performed solely for the sake of obtaining scores, and the alignments

4 of 7

COMP 322
Spring 2023

Homework 3: due by 11:59pm on Wednesday, March 29th, 2022

(Total: 100 points)

themselves are not needed. However, it is important to compute the scores as quickly as possible when
exploring alignments of large DNA sequences.

2.5 Your Assignment: Parallel Optimal Scoring for Pairwise Sequence Alignment

Your assignment is to design and implement parallel algorithms for optimal scoring for pairwise sequence
alignment. We have provided a sequential implementation of the algorithm in SeqScoring.java that you
can use as a starting point. You should not use phasers for checkpoint 1. You should not use any parallel
data constructs inside a constructor. Your homework deliverables are as follows:

1. [Checkpoint 1 due on Monday, March 6th, 2023: Ideal parallelism with abstract exe-
cution metrics (15 points)] Examine the dependence structure for S[i, j] defined in Section 2.4
and create an ideal parallel version called IdealParScoring.java that computes the same output as
SeqScoring.java, and delivers the maximum ideal parallelism ignoring all overheads. For analysis
of ideal parallelism, assume that computing a single element of S[i, j] takes one unit of time, e.g., by
inserting a call to doWork(1) between lines 9 and 10 of Listing 2. You will need to insert this doWork()
call at the appropriate location in the parallel solution you create in IdealParScoring. Your solution
will be evaluated using HJlib’s abstract metrics. There’s no cost to create an HJlib task. You should
not use phasers for Checkpoint 1. You may use phasers after Checkpoint 1.

For this checkpoint, we have some unit tests in Homework3Checkpoint1CorrectnessTest.java.

Hints based on common errors/omissions from past years: Remember to check that your solution
passes all unit tests, and that you don’t have any checkstyle errors.

2. [Checkpoint 2 due on Wednesday, March 22nd, 2023: Useful parallelism on NOTS com-
pute nodes (20 points)] Create a new parallel version of SeqScoring.java that is designed to
achieve the smallest execution time using 16 cores on a dedicated NOTS compute node. Note that
this is real execution time, not abstract metrics. Your code for this part will need to go into the
UsefulParScoring.java file.

For this part of the assignment, we recommend first debugging your solution on small strings for
correctness (which can be done on any platform) using Homework3Checkpoint2CorrectnessTest, and
then evaluating the performance of your implementation with pairs of strings of length O(104) on
dedicated NOTS compute nodes using Homework3PerformanceTest. Lab 5 will provide instructions
on submitting jobs to the NOTS cluster.

Even though each NOTS compute node has 32GB (or more) of memory, we will evaluate all homeworks
using a maximum heap size of 8GB. The JVM heap size for tests running on NOTS is set in the provided
pom.xml. Your submission will be evaluated with 8GB of heap, so changing this value in your pom.xml
may result in incorrect test results. If you are running the JUnit tests locally through IntelliJ rather
than using the provided pom.xml, you will want to add the following JVM command line argument to
your Run Configurations to ensure that the JVM launched by IntelliJ is allowed to allocate up to 8GB
of memory (in addition to the -javaagent argument that should already be there): -Xmx8192m

However, note that most laptops do not have 8GB of physical memory, so running some of the larger
tests locally may be prohibitively slow as your machine swaps memory pages out to disk as you exceed
physical memory capacity.

NOTE: a solution to the sparse memory solution for the final homework submission is also acceptable
as a solution for Checkpoint 2. However, we feel that many students will benefit from first completing
Checkpoint 2 for a dense memory version before starting on the sparse memory version below.

For this checkpoint, we have provided a set of unit tests in Homework3Checkpoint2CorrectnessTest.java.
The testUsefulParScoring and testUsefulParScoring2 tests in Homework3PerformanceTest.java

also evaluate the performance of your UsefulParScoring implementation against the sequential ver-
sion. We have provided a SLURM file under src/main/resources that can be used on NOTS to
submit Homework3PerformanceTest for testing on a compute node. Note that you will need to edit

5 of 7

COMP 322
Spring 2023

Homework 3: due by 11:59pm on Wednesday, March 29th, 2022

(Total: 100 points)

this SLURM file to supply your e-mail for notification and to provide the correct path to your hw3
folder on NOTS.

Hints based on common errors/omissions from past years: Remember to check that your solution
passes all unit tests, and that you don’t have any checkstyle errors. Also, you should aim to get a
speedup of ≥ 8× for this part; you will get a 1-point deduction if the speedup is in the [7, 8) range, a
2-point deduction if it is in the [6, 7) range, etc.

3. [Final submission: Sparse memory version and useful parallelism on NOTS compute nodes
(25 points)]

The sequential algorithm outlined in Listing 2 and SeqScoring.java allocates and uses a dense two-
dimensional matrix which requires O(n2) space when processing strings of size O(n). The goal of this
part of the assignment is to create a sparse memory version of the program that can process strings of
length O(105) or greater by using space that is less than O(n2). The key idea to think about is what
data really needs to be retained as the computation advances. For example, in the sequential version,
row 1 of the S matrix can be freed (set to null and garbage-collected) when the computation reaches
row 3, since computation of row 3 only needs row 2 and not row 1. As a reminder, since the JVM uses
automatic memory management through garbage collection, an object cannot be freed unless there are
no remaining references to it. To produce a space-efficient version, you will need to ensure that no
unnecessary data is retained, i.e. that it is not referenced by any variables in your implementation.

You will need to design and implement an analogous approach to reducing the space requirements of
the parallel version. This will require reworking the data structure for matrix S, and may even require
using a different algorithm (with different parallel constructs) from UsefulParScoring.java. Your
code for this part will need to go into the SparseParScoring.java file.

As before, we recommend first debugging your solution on small strings for correctness, and then testing
with pairs of strings of length O(105) on dedicated NOTS compute nodes, with the heap size set to
8GB. For reliable timing measurements, be sure to run these computations only on NOTS compute
nodes, and not on the login node. Also, there may be be some impact of Java’s garbage collection
(GC) on the performance you observe. Please contact a teaching staff member if you believe that GC
overheads are interfering with your performance measurements.

For the final submission, we have provided a small set of unit tests in Homework3Checkpoint3CorrectnessTest.java.
The testSparseParScoring and testSparseParScoring2 tests in Homework3PerformanceTest.java

also evaluate the performance of your SparseParScoring implementation against the sequential ver-
sion. We have provided a SLURM file under src/main/resources that can be used on NOTS to
submit Homework3PerformanceTest for testing on a compute node.

Hints based on common errors/omissions from past years: Remember to check that your solution
passes all unit tests, and that you don’t have any checkstyle errors. Also, you should aim to get a
speedup of ≥ 3× for this part; you will get a 1-point deduction if the speedup is in the [2.5, 3) range,
a 2-point deduction if it is in the [2, 2.5) range, etc. Finally, remember to include all the information
listed below (summarize design of all three parallel versions, include performance results, etc.)

4. [Homework report (10 points)] With the final submission you should submit a report file, for-
matted as a PDF file named hw3 report.pdf, summarizing the design of your parallel algorithms in
IdealParScoring.java, UsefulParScoring.java, and SparseParScoring.java explaining why you
believe that each implementation is correct and data-race-free. Your report should also include the
following measurements for UsefulParScoring.java and SparseParScoring.java:

(a) Execution time of SeqScoring.java and UsefulParScoring.java on a NOTS compute node
with inputs of length 10,000. You can get these numbers from a run of the
Homework3PerformanceTest.testUsefulParScoring test on NOTS (manually).

(b) Execution time of sequential and parallel versions of SparseParScoring.java with inputs of
length 100,000. Note that you will need a single-threaded execution of SparseParScoring for

6 of 7

COMP 322
Spring 2023

Homework 3: due by 11:59pm on Wednesday, March 29th, 2022

(Total: 100 points)

this item, not a run of SeqScoring as it will run out of memory. You can get these measurements
from the Homework3PerformanceTest.testSparseParScoring test on NOTS (manually).

7 of 7

	Written Assignment (30 points total)
	Amdahl's Law (15 points)
	Finish Accumulators (15 points)

	Programming Assignment (70 points)
	Habanero-Java Library (HJ-lib) Setup
	Pairwise Sequence Alignment
	Scoring in Pairwise Sequence Alignment: Optimality Criterion
	Sequential Algorithm to compute the Optimal Scoring for Pairwise Sequence Alignment
	Your Assignment: Parallel Optimal Scoring for Pairwise Sequence Alignment

