Lab 1: Parallel Programming with HJlib
Instructors Mack Joyner

Course Wiki: http://comp322.rice.edu

Staff Email: comp322-staff@mailman.rice.edu

Goal for this lab

Run a parallel program with three HJlib APIs: launchHabaneroApp, async, and finish.

1 Lab 1 Exercises

NOTE: The instructions below are written for Mac OS and Linux computers, but should be easily adaptable to Windows with minor changes e.g., you may need to use \ instead of / in some commands.

1.1 HJlib install

Maven will expect HJlib to be located in a specific local directory. Use the following command on the IntelliJ
→ Maven → Execute Maven Goal (m button) command line to place HJlib in the correct local directory:

```
mvn install:install-file -Dfile=./src/main/resources/hjlib-elogs-aedancullen-master-d2108184ec-1.jar
-DgroupId=com.github.RiceParProgCourse -DartifactId=hjlib-elogs-aedancullen
-Dversion=master-d2108184ec-1 -Dpackaging=jar
```

You should now see the jar file in /Users/your_username/.m2/repository/com/github/RiceParProgCourse/hjlib-
elogs-aedancullen/master-d2108184ec-1/hjlib-elogs-aedancullen-master-d2108184ec-1.jar. Once HJlib is installed in this directory, you should not need to reinstall it for subsequent labs and homework.

1.2 HelloWorld program

The first exercise is to familiarize yourself with the kind of code you will see and be expected to write in your assignments. The HelloWorldError.java program does not have any interesting parallelism, but introduces you to the starter set for HJlib, which consists of three method calls1:

- **launchHabaneroApp()** Launches the fragment of code to be run by the Habanero runtime. All your code that uses any of the Habanero constructs must be (transitively) nested inside this method call. For example,

  ```java
  launchHabaneroApp(() -> {S1; ...});
  ```

 executes S1, ..., within an implicit `finish`. You are welcome to add `finish` statements explicitly in your code in statements S1, ... While most assignments will not require that you write `launchHabaneroApp` explicitly (it will be included in the testing harness), it is good to be aware of.

- **async** contains the API for executing a lambda asynchronously. For example,

  ```java
  async(() -> {S1; ...});
  ```

 spawns a new child task to execute statements S1, ... asynchronously.

1 Note that these and other HJlib APIs make extensive use of lambda expressions.
• **finish** contains the API for executing a lambda in a finish scope. For example,

```java
finish(() -> {S1; ...});
```

executes statements S1, ..., but waits until all (transitively) spawned async in the statements’ scope have terminated.

Uncomment line 44 in `HelloWorldError.java`. Compiling with your IDE or `mvn clean compile` should give you a compilation error similar to:

`HelloWorldError.java:[44,53] cannot find symbol
symbol: variable ss
location: class edu.rice.comp322.HelloWorldError`

Your task is to fix this error. Replace “ss” by “s” in `HelloWorldError.java` and rebuild, verifying a successful compilation.

Next, we can try running the simple HelloWorldError project. From IntelliJ, that should be as simple as right-clicking on the `main` method and selecting Run:

We expect this to produce some error output in the console:

HJlib requires what is called a “Java Agent” to be added to the command line when launching programs. If HJlib discovers during startup that no Java Agent has been provided, it will 1) print the above error message, and 2) place the needed command-line argument in your clipboard for convenience. In IntelliJ, the simplest way to resolve this for the HelloWorldError example is through Run → Edit Configurations...
In the popup, you can then paste the `-javaagent` from the error output into the VM options textbox and hit OK.

For Windows, the error may not show the `-javaagent` option in the output. You can paste the following:

```
-javaagent:"C:\Users\yourusername\m2\repository\com\github\RiceParProgCourse\hjlib-elog-aedancullen\master-d2108184ec-1\hjlib-elog-aedancullen-master-d2108184ec-1.jar"
```

If you try re-running HelloWorldError, the program should now complete successfully with two prints.

2 Submitting to your GitHub repo

Git supports committing changes from your local repo back to the GitHub cloud. This can be done in IntelliJ or on the command line. If it’s the first time you’re committing the file, you need to first perform an `git add`. To commit from the command line, this is possible using the `git commit` command from your project directory:

```
$ git commit -m "your commit msg here"
```

Where “your commit msg here” can be any informational message you like.

From IntelliJ commits can be done through the VCS → Commit Changes... selection:
Select the Commit... option. The pop-up window will then allow you to fill in a commit message and preview the differences between the versions of the code in the cloud and on your laptop. After providing a commit message, hit Commit (and feel free to ignore any warnings for now).

Next, push your changes to your remote repo:
You can confirm that your commit went through using your web browser. For example, by navigating to:

https://github.com/RiceParProgCourse/lab1-GITID.git

with GITID replaced by your GitHub account name, you should see an updated version of HelloWorldError.java with your changes.

While the concept of Git may be new to you, using `git commit` and `git push` to save your changes to the Git server can be very useful. Frequently committing your code protects you from an accidental deletion or modification of your source blowing away days worth of work, as all changes will be saved in Git. All of your commits to Git are also visible to the teaching staff, and when asking for help on an assignment it can sometimes be simple to just point them to your code in Git to ensure everyone is looking at the same version.

3 Demonstrating your lab work

Show your work to an instructor or TA to get credit for this lab during lab or office hours (as in COMP 215) by Tuesday, January 16th at 2:00pm. They will want to see your updated files committed and pushed to GitHub in your web browser, and the passing unit tests on your laptop. Since there are no unit tests for lab 1, you’ll just run your code and the staff will check you off if the run completes.