
COMP 322 Spring 2024

Lab 1: Parallel Programming with HJlib
Instructors Mack Joyner

Course Wiki: http://comp322.rice.edu

Staff Email: comp322-staff@mailman.rice.edu

Goal for this lab

Run a parallel program with three HJlib APIs: launchHabaneroApp, async, and finish.

1 Lab 1 Exercises

NOTE: The instructions below are written for Mac OS and Linux computers, but should be easily adaptable
to Windows with minor changes e.g., you may need to use \ instead of / in some commands.

1.1 HJlib install

Maven will expect HJlib to be located in a specific local directory. Use the following command on the IntelliJ
→ Maven → Execute Maven Goal (m button) command line to place HJlib in the correct local directory:

mvn install:install-file -Dfile=./src/main/resources/hjlib-elog-aedancullen-master-d2108184ec-1.jar

-DgroupId=com.github.RiceParProgCourse -DartifactId=hjlib-elog-aedancullen

-Dversion=master-d2108184ec-1 -Dpackaging=jar

You should now see the jar file in /Users/your username/.m2/repository/com/github/RiceParProgCourse/hjlib-
elog-aedancullen/master-d2108184ec-1/hjlib-elog-aedancullen-master-d2108184ec-1.jar. Once HJlib is in-
stalled in this directory, you should not need to reinstall it for subsequent labs and homework.

1.2 HelloWorld program

The first exercise is to familiarize yourself with the kind of code you will see and be expected to write in your
assignments. The HelloWorldError.java program does not have any interesting parallelism, but introduces
you to the starter set for HJlib, which consists of three method calls1:

• launchHabaneroApp() Launches the fragment of code to be run by the Habanero runtime. All your
code that uses any of the Habanero constructs must be (transitively) nested inside this method call.
For example,

launchHabaneroApp(() -> {S1; ...});

executes S1, ..., within an implicit finish. You are welcome to add finish statements explicitly in your
code in statements S1, .... While most assignments will not require that you write launchHabaneroApp
explicitly (it will be included in the testing harness), it is good to be aware of.

• async contains the API for executing a lambda asynchronously. For example,

async(() -> {S1; ...});

spawns a new child task to execute statements S1, ... asynchronously.

1Note that these and other HJlib APIs make extensive use of lambda expressions.

1 of 5

http://comp322.rice.edu
mailto:comp322-staff@mailman.rice.edu
http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module0.html#launchHabaneroApp-edu.rice.hj.api.HjSuspendable-
http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module1.html#async-edu.rice.hj.api.HjSuspendable-


COMP 322
Spring 2024

Lab 1: Parallel Programming with HJlib

• finish contains the API for executing a lambda in a finish scope. For example,

finish(() -> {S1; ...});

executes statements S1, ..., but waits until all (transitively) spawned asyncs in the statements’ scope
have terminated.

Uncomment line 44 in HelloWorldError.java. Compiling with your IDE or mvn clean compile should
give you a compilation error similar to:

HelloWorldError.java:[44,53] cannot find symbol

symbol: variable ss

location: class edu.rice.comp322.HelloWorldError

Your task is to fix this error. Replace “ss” by “s” in HelloWorldError.java and rebuild, verifying a successful
compilation.

Next, we can try running the simple HelloWorldError project. From IntelliJ, that should be as simple as
right-clicking on the main method and selecting Run:

We expect this to produce some error output in the console:

HJlib requires what is called a “Java Agent” to be added to the command line when launching programs.
If HJlib discovers during startup that no Java Agent has been provided, it will 1) print the above error
message, and 2) place the needed command-line argument in your clipboard for convenience. In IntelliJ, the
simplest way to resolve this for the HelloWorldError example is through Run → Edit Configurations...

2 of 5

http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module0.html#finish-edu.rice.hj.api.HjSuspendable-


COMP 322
Spring 2024

Lab 1: Parallel Programming with HJlib

In the popup, you can then paste the -javaagent from the error output into the VM options textbox and
hit OK.

For Windows, the error may not show the -javaagent option in the output. You can paste the following:
-javaagent:"C:\Users\yourusername\.m2\repository\com\github\RiceParProgCourse\hjlib-elog-aedancullen\master-d2108184ec-1
\hjlib-elog-aedancullen-master-d2108184ec-1.jar"

If you try re-running HelloWorldError, the program should now complete successfully with two prints.

2 Submitting to your GitHub repo

Git supports committing changes from your local repo back to the GitHub cloud. This can be down in
IntelliJ or on the command line. If it’s the first time you’re committing the fine, you need to first perform
an git add. To commit from the command line, this is possible using the git commit command from your
project directory:

$ git commit -m "your commit msg here"

Where “your commit msg here” can be any informational message you like.

From IntelliJ commits can be done through the VCS → Commit Changes... selection:

3 of 5



COMP 322
Spring 2024

Lab 1: Parallel Programming with HJlib

Select the Commit... option. The pop-up window will then allow you to fill in a commit message and preview
the differences between the versions of the code in the cloud and on your laptop. After providing a commit
message, hit Commit (and feel free to ignore any warnings for now).

Next, push your changes to your remote repo:

4 of 5



COMP 322
Spring 2024

Lab 1: Parallel Programming with HJlib

You can confirm that your commit went through using your web browser. For example, by navigating to:

https://github.com/RiceParProgCourse/lab1-GITID.git

with GITID replaced by your GitHub account name, you should see an updated version of HelloWorldEr-
ror.java with your changes.

While the concept of Git may be new to you, using git commit and git push to save your changes to the
Git server can be very useful. Frequently committing your code protects you from an accidental deletion
or modification of your source blowing away days worth of work, as all changes will be saved in Git. All
of your commits to Git are also visible to the teaching staff, and when asking for help on an assignment it
can sometimes be simple to just point them to your code in Git to ensure everyone is looking at the same
version.

3 Demonstrating your lab work

Show your work to an instructor or TA to get credit for this lab during lab or office hours (as in COMP
215) by Tuesday, January 16th at 2:00pm. They will want to see your updated files committed and pushed
to GitHub in your web browser, and the passing unit tests on your laptop. Since there are no unit tests for
lab 1, you’ll just run your code and the staff will check you off if the run completes.

5 of 5


	Lab 1 Exercises
	HJlib install
	HelloWorld program

	Submitting to your GitHub repo
	Demonstrating your lab work

