
COMP 322 Spring 2024

Lab 2: Functional Programming
Instructors: Mack Joyner

Course wiki: http://comp322.rice.edu

Staff Email: comp322-staff@rice.edu

Goals for this lab

• Experiment with the functional programming concepts we learned in class, specifically the implemen-
tation of higher-order functions.

Downloads

As with lab 1, the provided template project is accessible through your private GitHub classroom repo at:
https://classroom.github.com/a/v5OAK8eQ

For instructions on checking out this repo through IntelliJ or through the command-line, please see the Lab
1 handout. The below instructions will assume that you have already checked out the lab2 folder, and that
you have imported it as a Maven Project if you are using IntelliJ.

1 Functional Trees

In this lab, you are given starter code for functional trees. The functional trees are implemented using a very
similar approach to the one we used in class to implement functional lists. A Tree is a generic interface that
has two implementations: Node and Empty. A Node is a class that represents a node in a tree. Each node
has some generic value (private final T value), and a list of children (private final GList<Tree<T>>

children). Each child is another tree. If the list of children is empty, then the node is a leaf node.

You are also given a GList implementation that we discussed in class, both to use as a template to see how
these higher-order functions could be implemented on generic functional data structures, and to use in your
implementation (since the children in each node are implemented as a GList.

In this lab, you will need to edit Tree.java to produce a correct implementation for map and filter methods
on generic functional trees.

In Tree.java you will find that the map and filter are already implemented for the class Empty (they
return an empty tree). Running LabCorrectnessTest.java will verify the correctness of your solution.

1.1 Implementing Map

This is the easier of the two problems, as the structure of the tree does not need to change. All you need to
do is map every value in every node to the new value, using the function f that is passed as the argument
to map.

map is purely functional. Its result should be a new tree that has the exact same structure as the original tree,
but the values in each node of the result tree are the result of applying the function f on the corresponding
node in the original tree. There is no mutation here, you should not modify the original tree in any way.
You may find the Tree.makeNode method useful for creating new nodes for the result tree.

Make sure you traverse the whole tree to apply the mapping function. You may find the method GList.map

useful when traversing the children of a node.

1 of 4

http://comp322.rice.edu
mailto:comp322-staff@rice.edu
https://classroom.github.com/a/v5OAK8eQ

COMP 322
Spring 2024

Lab 2: Functional Programming

Take a look at the Lab2CorrectnessTest.testMap() method. Here, we are creating a tree to test the map
function as follows:

var n1 = makeNode("Hello", GList.empty());

var n2 = makeNode("Rice", GList.empty());

var n3 = makeNode("University", GList.empty());

var t1 = makeNode("First Tree", GList.of(n1, n2, n3));

var t2 = makeNode("Second Tree", GList.of(t1, n1, n2));

var t3 = makeNode("Third Tree", GList.of(t1, t2, n3));

This creates a tree t3 that looks like this:

Third Tree

First Tree

Hello

Second
Tree

Rice

University

First Tree

Hello Rice University

Hello Rice

University

t3

t1

n1 n2 n3

n3

t2

t1

n1 n2 n3

n1 n2

Now, when we map this tree using the following call:

var resultTree = t3.map(String::length)

We should get a new tree resultTree that looks like this:

2 of 4

COMP 322
Spring 2024

Lab 2: Functional Programming

10

10

5

11

4

10

10

5 4 10

5 4

10

resultTree

Notice that the resultTree has the exact same structure as t3, but the value of each node in resultTree

is the lenght of the string in the corresponding node in t3.

1.2 Implementing Filter

Implementing filter is going to be a bit trickier, since we will have to restructure the resulting tree. If the
predicate p is returns false when applied to a value in a node, then that node should not appear in the
result tree. But what happens at the position that that node was occupying? We have to find a replacement
for that node, if one exists.

We will be using a very simple approach for restructuring the tree. What if that first child needs to be
filtered out? Well, it will get replaced by its own first child. And so on... Hopefully, you see the recursive
structure of the approach here. If all the children and their subtrees of a node that is filtered out are also
filtered out, then the node and its whole subtree do not appear in the output.

For example, let’s say we want to filter out all the nodes in the tree t3 we discussed earlier that contain a
string of length of more than 5. I.e., we want to keep all the nodes containing strings of less than 6. We
would do this using filter like so:

filteredTree = t3.filter(s -> s.length() < 6);

What does filteredTree look like? Like this:

3 of 4

COMP 322
Spring 2024

Lab 2: Functional Programming

Hello

Rice Hello

Rice Hello Rice

What exactly happened here? Well, the node at the root (“Third Tree”) needs to be filtered out, so it gets
replaced by the first child. But the first child (“First Tree”) is also filtered out, so it gets replaced by its
own first child (“Hello”). That’s now the root of the result tree. Only node n2 (“Rice”) is what’s left over
from the whole t1 subtree.

Similarly, the node t2 (“Second Tree”) is filtered out, and needs to be replaced by its first child. But the
first child, node t1 (“First Tree”) is also filtered out, so it’s replaced by its own first child, node n1 (“Hello”).

The third child of the original root, node n3 (“University”) gets filtered out.

To help you out, we have given you a helper function makeTreeHelper, that, given a GList of trees, makes
one single tree out of them, by making the fist tree in the list the root tree, and appending all the remaining
trees to the children of the first tree.

Remember, think recursively! We filter the tree by filtering all its children. Filtering some of those children
may result in empty trees, so we’ll need to get rid of those. Then, if needed (if the root of the tree needs to
be filtered out as well), we can just make one single tree out of the list of children by calling the provided
helper function.

The reference solution is 4 lines of code, and most of it is dealing with cases whether the root node does or
does not need to be filtered out.

2 Demonstrating your lab work

Show your work to an instructor or TA to get credit for this lab during lab or office hours by Monday,
January 29th at 3pm. They will want to see your updated files committed and pushed to GitHub in your
web browser, and the passing unit tests on your laptop.

4 of 4

	Functional Trees
	Implementing Map
	Implementing Filter

	Demonstrating your lab work

