
COMP 322 Spring 2024

Lab 5: Loop-level Parallelism
Instructor: Mack Joyner

Course Wiki: http://comp322.rice.edu

Staff Email: comp322-staff@mailman.rice.edu

Goals for this lab

• Experimentation with Loop-level Parallelism and Chunking in Image Convolution (Section 1)

• NOTS Setup (Section 2)

• An introduction to the shell (Section 3)

Downloads

As with previous labs, the provided template project is accessible through your private GitHub repo at:
https://classroom.github.com/a/tWSHs8cz

For instructions on checking out this repo through IntelliJ or through the command-line, please see the Lab
1 handout. The below instructions will assume that you have already checked out the lab5 folder, and that
you have imported it as a Maven Project if you are using IntelliJ.

1 Image Kernels

The code provided in Lab5.java offers a sequential implementation of a convolution kernel which applies
some transformation kernel to an image. Your task for this lab is to make this sequential implementation
parallel and measure its real world speedup on the NOTS cluster.

You should start by gaining an understanding of the application you will be parallelizing today. This website
provides an excellent introduction to convolutional image kernels.

Next, try running the provided tests using the provided sequential code. These tests read the image at
src/main/resources/kobe.jpg, applies two different transformations to it, and writes the output of those
transformations to src/main/resources/kobe.1.jpg and src/main/resources/kobe.2.jpg. The first
transformation highlights edges in the image. The second transformation brightens the image. After running
the provided tests you should be able to open kobe.jpg, kobe.1.jpg, and kobe.2.jpg next to each other
and clearly see the results of the applied transformation.

You are now ready for the first part of the lab assignment, which is to efficiently parallelize the kernel in
Lab5.convolve, by using the forall or forallChunked constructs in HJlib. (You are welcome to implement
chunking by hand instead of using forallChunked.) It may help you to know that the bounds for the four
loops are determined by the following values in the test case: inputWidth = 3280, inputHeight = 4928, and
kernelWidth = kernelHeight = 3.

Once you have efficiently parallelized this kernel on your laptop, you should submit it to NOTS manually
using the process detailed below (i.e. by transferring your changed Lab 5 to the cluster using scp/sftp/GIT
and then submitting using sbatch).

1 of 6

http://comp322.rice.edu
mailto:comp322-staff@mailman.rice.edu
https://classroom.github.com/a/tWSHs8cz
http://setosa.io/ev/image-kernels/

COMP 322
Spring 2024

Lab 5: Loop-level Parallelism

2 NOTS setup

NOTS (Night Owls Time-Sharing Service) is a Rice compute cluster designed to run large multi-node jobs
over a fast interconnect. Each node is equipped with two Intel E5-2650v2 Ivy Bridge EP processors for a
total of 16 cores per node. Each core can support threads, each running at 2.6GHz. Memory sizes on the
compute nodes range from 32-128GB RAM. The main difference between using NOTS and using your laptop
is that NOTS allows you to gain access to dedicated compute nodes to obtain reliable performance timings
for your programming assignments. On your laptop, you have less control over when other processes or your
power manager might start stealing cores or memory from your running parallel program.

• Start by logging in to NOTS. Make sure you’re on the ”Rice Owls” network. From the command line
on Mac/Linux/Windows:

$ ssh 〈your-netid〉@nots.rice.edu
〈your-netid〉@nots.rice.edu’s password: 〈your-password〉

• After you have logged in to NOTS, run the following command to setup the JDK11 and Maven path.
Do not replace ”mjoyner” with your net ID.

source /home/mjoyner/comp322/322 setup.sh

Note: This will be set up for you when you start a job using the provided slurm file.

• Check your installation by running the following commands:

which java

You should see the following: /opt/apps/software/Core/Java/11.0 45/bin/java

Check java installation:

java -version

You should see the following:

java version "11.0 45" Java(TM) SE Runtime Environment (build 11.0 45-b14) Java

HotSpot(TM) 64-Bit Server VM (build 25.45-b02, mixed mode)

Check maven installation:

mvn --version

You should see the following:

Apache Maven 3.3.9 (bb52d8502b132ec0a5a3f4c09453c07478323dc5; 2015-11-10T10:41:47-06:00)

Maven home: /home/jmg3/install/apache-maven-3.3.9 Java version: 11.0 45, vendor:

Oracle Corporation Java home: /opt/apps/software/Core/Java/11.0 45/jre Default

locale: en US, platform encoding: UTF-8 OS name: "linux", version: "3.10.0-229.el7.x86 64",

arch: "amd64", family: "unix"

• When you log on to NOTS, you will be connected to a login node along with many other users (type
users at the terminal if you would like to see all the other people with active sessions on the same
machine). Running your performance experiments on the login node would face the same problems as
on your laptops: in a multi-tenant system, it is hard to prevent interference with your performance
results. Once you have an executable program, and are ready to run it on the compute nodes, you
must create a job script that configures and runs your program on a dedicated compute node. The
following items will walk you through editing a job script we have provided, uploading your Lab 5
project to NOTS, and then launching a compute job on NOTS using the job script.

2 of 6

COMP 322
Spring 2024

Lab 5: Loop-level Parallelism

• The job script will provide information on your job such as the number of nodes you want to use
(usually just one in this course), the amount of time you want your job to be allowed to run for, the
amount of memory your job will need, as well as the actual commands you want to be executed as
part of your job. We have provided a script template in the Lab 5 template code at:

lab5-GITID /src/main/resources/myjob.slurm

You need to change the lines marked “TODO”. The change on line 8 of that file indicates an e-mail
address to send job status notifications to.

• Now, we want to transfer your lab5 folder from your local machine up to NOTS so that we can submit
the Lab 5 code to the cluster for testing. NOTE: You must place your lab5 folder directly inside of
your $HOME directory, so that the absolute path to it is /home/[net-id]/lab5. To transfer a folder to
NOTS, you can use one of two methods:

– Use SCP: Use the following command on your local machine to transfer your lab5 folder to NOTS:

scp -r /local/path/to/lab5 [your-net-id]@nots.rice.edu:∼/
– Use GitHub: You can commit your local changes to GitHub. Then you can checkout or update

the project on your NOTS account:

git clone https://github.com/RiceParProgCourse/lab5-GITID.git

• Now that we have edited the Lab 5 job script and uploaded the Lab 5 folder to NOTS, we can submit
a test job to the cluster. To submit the job, run the following command on NOTS:

sbatch /path/to/my/lab5/src/main/resources/myjob.slurm

After you have submitted the job, you should see the following:

Submitted batch job [job number]

• To check the status of a submitted job, use the following command:

squeue -u [your-net-id]

If no jobs are listed, you have no running jobs.

• Because NOTS is shared by many users, it may take some time for your job to make it through the
job queue and get assigned a compute node. If you would like to see an estimate of when your job will
start, you can add the --start flag to the squeue command:

squeue -u [your-net-id] --start

Note that adding --start will only show jobs that are pending and have not started yet. If your job
is already running, you will see it listed under squeue -u [net-id] but not squeue -u [net-id]

--start.

• To cancel a submitted job, use the following command:

scancel [job-id]

When your job finishes running, your should see an output file titled slurm-[job-id].out in the same
directory from which you submitted the job. This file contains the output produced by your job during
its execution on a dedicated compute node. You can either transfer these output files back to your
laptop for viewing, or use a tool on the cluster to open them (such as cat, less, emacs, or vim).

3 of 6

COMP 322
Spring 2024

Lab 5: Loop-level Parallelism

3 A Quick Introduction to Useful Shell Commands

As we move more into using NOTS to measure real-world performance, being comfortable with the shell will
become more and more useful in 322. This section briefly introduces you to the most commonly used shell
commands. There are no required “tasks” or “goals” for this section beyond improving your awareness of
these commands. However, you are encouraged to play with these commands in your own terminal (on your
laptop or on NOTS) to help build familiarity. We have provided a sample set of exercises at the end of this
section that you can use to help learn the commands.

Linux relies heavily on an abundance of command line tools. Most input lines entered at the shell prompt
have three basic elements: command, options, and arguments. The command is the name of the program
you are executing. It may be followed by one or more options (or switches) that modify what the command
may do. Options usually start with one or two dashes, for example, -p or --print, in order to differentiate
them from arguments, which represent what the command operates on. The interested student is encouraged
to view Chapter 7 in the LinuxFoundationX: LFS101x.2 Introduction to Linux course on edX for a more
thorough introduction on the commands covered in lab today.

In order to help you organize your files, your file system contains special files called directories. A directory is
a logical section of a file system used to hold files. Directories may also contain other directories. Directories
are separated by a forward slash (/). The current directory, regardless of which directory it is, is represented
by a single dot (.). The parent directory of the current directory (i.e., the directory one level up from the
current directory) is represented by two dots (..). Your home directory is the directory you are placed in, by
default, when you open a new terminal session. It has a special representation: a tilde followed by a slash
(˜/).

Below are some of the most used commands, along with brief descriptions of each.

3.1 pwd

pwd means “print working directory”. It is used to output the path of the current working directory.

3.2 mkdir

mkdir means “make directory” and is used to create new directories. It creates the directory(ies), only if
they do not already exist. Use the -p flag to ensure parent directories are created as needed.

3.3 cd

cd means “change directory”. The cd command is used to change the current working directory. It can
be used to change into a subdirectory, move back into the parent directory, move all the way back to the
root directory, or move to any given directory. When the first character of a directory name is a slash, that
denotes that the directory path begins in the root directory.

3.4 ls

ls means “list directory”. The ls command lists out the contents of the directory you are currently in. You
can use cd to change into different directories and then list what’s in them so I know which directory to go
to next.

3.5 dirs, pushd and popd

pushd means “push directory”. popd means “pop directory”. Both commands are used to work with the
command line directory stack. The pushd command saves the current working directory in memory so it
can be returned to at any time, optionally changing to a new directory. The popd command returns to the
path at the top of the directory stack. This directory stack can be viewed by the command dirs.

3.6 rm

rm means “remove”. Directories and files can be removed (deleted) with the rm command. By default,
it does not remove directories. If the -r (--recursive) option is specified, however, rm will remove any

4 of 6

COMP 322
Spring 2024

Lab 5: Loop-level Parallelism

matching directories and their contents. Use the -f (--force) option to never be prompted while files are
being removed. The -v (--verbose) option can be used to get rm to detail successful removal actions.

3.7 cp

cp means “copy a file or directory”. The command has three principal modes of operation, expressed by
the types of arguments presented to the program for copying a file to another file, one or more files to a
directory, or for copying entire directories to another directory. The commands takes two arguments, source
and destination files, which may reside in different directories. You can use cp to copy entire directory
structures from one place to another using the -R option to perform a recursive copy. Using this option
copies all files, and all subdirectories from the source to the destination directory. you can specify multiple
files as the source, and a directory name as the destination.

3.8 mv

mv means “move a file or directory”. It moves one or more files or directories from one place to another, it
is also used to rename files. When a filename is moved to an existing filename (in the same directory), the
existing file is deleted. Use the -f (--force) option to never be prompted before overwriting existing files.
The -v (--verbose) option can be used to get details on the actions and destination locations of the files
being moved.

3.9 touch

The touch command is used to make an empty file. The touch command is the easiest way to create new,
empty files. Touch eliminates the unnecessary steps of opening the file, saving the file, and closing the file
again. It is also used to change the timestamps on existing files and directories.

3.10 less

It is used to view (but not change) the contents of a text file one screen at a time. Unlike most Unix text
editors/viewers, less does not need to read the entire file before starting, resulting in faster load times with
large files. You can open a file by passing the file name as an argument to the command. To traverse the
file press the following, use the down arrow to scroll down one line while using the up arrow scrolls up one
line. Using q will exit the less command.

3.11 cat

The cat command prints the contents of a file to screen and can be used to concatenate and list files.
The name is an abbreviation of catenate, a synonym of concatenate. cat will concatenate (put together)
the input files in the order given, and if no other commands are given, will print them on the screen as
standard output. It can also be used to print the files into a new file as follows: cat old1.txt old2.txt >

newfile.txt Typing the command cat followed by the output redirection operator and a file name on the
same line, pressing ENTER to move to the next line, then typing some text and finally pressing ENTER
again causes the text to be written to that file. The program is terminated and the normal command prompt
is restored by pressing the CONTROL and d keys simultaneously.

3.12 find

The find command is a very useful and handy command to search for files from the command line. find

will search any set of directories you specify for files that match the supplied search criteria. You can search
for files by name, owner, group, type, permissions, date, and other criteria. The search is recursive in that
it will search all subdirectories too. All arguments to find are optional, and there are defaults for all parts.

3.13 grep

The grep command is used to search text or searches the given file for lines containing a match to the given
strings or words. Its name comes from the ed command g/re/p (globally search a regular expression and
print), which has the same effect: doing a global search with the regular expression and printing all matching
lines. By default, grep displays the matching lines. You can force grep to ignore word case with the -i

5 of 6

COMP 322
Spring 2024

Lab 5: Loop-level Parallelism

option.

3.14 man

The man command is used to format and display the system’s reference manuals. The man pages are a user
manual; they provide extensive documentation about commands. Each argument given to man is normally
the name of a program, utility or function. man is most commonly used without any options and with only
one keyword. The keyword is the exact name of the command or other item for which information is desired,
e.g. man ls.

4 Demonstrating and submitting in your lab work

For this lab, you will need to demonstrate and submit your work before Monday, March 6th at 3pm as
follows.

1. Show your work to an instructor or TA to get credit for this lab. They will want to see your files
submitted to GitHub in your web browser and the passing unit tests on NOTS.

2. Check that all the work for today’s lab is in your lab5 directory by opening https://classroom.

github.com/a/tWSHs8cz in your web browser and checking that your changes have appeared.

6 of 6

https://classroom.github.com/a/tWSHs8cz
https://classroom.github.com/a/tWSHs8cz

	Image Kernels
	NOTS setup
	A Quick Introduction to Useful Shell Commands
	pwd
	mkdir
	cd
	ls
	dirs, pushd and popd
	rm
	cp
	mv
	touch
	less
	cat
	find
	grep
	man

	Demonstrating and submitting in your lab work

