Worksheet #13 solution: Parallelism in Java Streams, Parallel Prefix Sums

1. What output will the following Java Streams code print?

   ```java
   Arrays.asList("a1", "a2", "b1", "c2", "c1").parallelStream().filter(s -> s.startsWith("c")).sorted().map(String::toUpperCase).forEach(System.out::println);
   ```

 The sorted() operation is a no-op if the printing is performed in parallel!

2. Which stream operation in this example could benefit from a parallel prefix sum implementation, and why?

 The filter operation since parallel prefix can be used to compute the indices in the output array.
Recap: Parallel Filter Operation

[Credits: David Walker and Andrew W. Appel (Princeton), Dan Grossman (U. Washington)]

Given an array input, produce an array output containing only elements such that \(f(elt) \) is true, i.e., output = input.parallelStream.filter(f).toArray

Example: input \([17, 4, 6, 8, 11, 5, 13, 19, 0, 24]\)

\(f: \) is elt > 10

output \([17, 11, 13, 19, 24]\)

Parallelizable?

—Finding elements for the output is easy

—But getting them in the right place seems hard
Recap: Parallel prefix to the rescue

1. Parallel map to compute a bit-vector for true elements (can use Java streams)
 - Input: [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
 - Bits: [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector (not available in Java streams)
 - Bitsum: [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output (can use Java streams)
 - Output: [17, 11, 13, 19, 24]

   ```java
   output = new array of size bitsum[n-1]
   FORALL (i=0; i < input.length; i++)
       if (bits[i] == 1)
           output[bitsum[i]-1] = input[i];
   ```
One-Dimensional Iterative Averaging Revisited

- Initialize a one-dimensional array of \((n+2)\) double’s with boundary conditions, \(\text{myVal}[0] = 0\) and \(\text{myVal}[n+1] = 1\).

- In each iteration, each interior element \(\text{myVal}[i]\) in 1..\(n\) is replaced by the average of its left and right neighbors.
 - Two separate arrays are used in each iteration, one for old values and the other for the new values

- After a sufficient number of iterations, we expect each element of the array to converge to \(\text{myVal}[i] = (\text{myVal}[i-1] + \text{myVal}[i+1])/2\), for all \(i\) in 1..\(n\)

Illustration of an intermediate step for \(n = 8\) (source: Figure 6.19 in Lin-Snyder book)
Iterative Averaging structure is akin to that of a Finite Difference solution to the One-Dimensional Heat Equation

- In the 1D heat equation, $u(j,t)$ represents the temperature at position j in a 1D object at n^{th} time step (different use of “n” from our code)

- Recall that for a “properly-behaved” function f, and a sufficiently small h, we can approximate the first derivative of f as follows:

$$f'(a) \approx \frac{f(a + h) - f(a)}{h}$$

- We can use this principle in both space and time to compute
 - $u(j,n+1) = f(u(j-1,n), u(j,n), u(j+1,n))$

for multiple time steps n until we reach a convergence with an acceptably small error between time steps

- These algorithms are also referred to as “stencil codes”

- See also: https://en.wikipedia.org/wiki/Heat_equation
HJ code for One-Dimensional Iterative Averaging using nested forseq-forall structure (Lecture 11)

1. double[] myVal=new double[n+2]; myVal[n+1] = 1;
2. double[] myNew=new double[n+2]; myNew[n+1] = myVal[n+1];
3. forseq(0, m-1, (iter) -> {
4. // Compute MyNew as function of input array MyVal
5. forall(1, n, (j) -> {
6. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
7. }); // forall
8. // Swap myVal & myNew;
9. temp=myVal; myVal=myNew; myNew=temp;
10. // myNew becomes input array for next iteration
11. }); // for
Converting forseq-forall version (Slide 7) into a forall-forseq version with barriers

1. double[] gVal=new double[n+2]; gVal[n+1] = 1;
2. double[] gNew=new double[n+2];
3. forallPhased(1, n, (j) -> { // Create n tasks
4. // Initialize myVal and myNew as local pointers
5. double[] myVal = gVal; double[] myNew = gNew;
6. forseq(0, m-1, (iter) -> {
7. // Compute MyNew as function of input array MyVal
8. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
9. next(); // Barrier before next iteration of iter loop
10. // Swap local pointers, myVal and myNew
11. double[] temp=myVal; myVal=myNew; myNew=temp;
12. // myNew becomes input array for next iteration
13. }); // forseq
14. }); // forall
General Approach for Iteration Grouping
(Loop Chunking)

Without chunking:

```java
for (iter : [0:iterations-1]) {
    forall (j : [1:n])
        myNew[j] = (myVal[j-1] + myVal[j+1])/2;
    Swap myNew and myVal
}
```

With chunking (replace “forall” by “forall-for”):

```java
for (iter : [0:iterations-1]) {
    forall (g : [0:ng-1])
        for (j : myGroup(g,[1:n],ng)
            myNew[j] = (myVal[j-1] + myVal[j+1])/2;
        Swap myNew and myVal
```
Example: HJ code for One-Dimensional Iterative Averaging with Slide 7 code w/ chunking (Lecture 11)

```java
1. double[] myVal = new double[n+2]; myVal[n+1] = 1;
2. double[] myNew = new double[n+2]; myNew[n+1] = myVal[n+1];
3. int nc = numWorkerThreads();
4. forseq(0, m-1, (iter) -> {
   // Compute MyNew as function of input array MyVal
5.   forallChunked(1, n, n/nc, (j) -> {
       // Create nc tasks
7.       myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
8.   }); // forallChunked
9.   temp = myVal; myVal = myNew; myNew = temp; // Swap myVal & myNew;
10.  // myNew becomes input array for next iteration
11. }); // for
```
Barrier-based solution:

// Note that iter-loop is inserted between forall-g and for-j loops

forall (g : [0:ng-1])

for (iter : [0:iterations-1]) {
 for(j : myGroup(g,[1:n],ng)
 myNew[j] = (myVal[j-1] + myVal[j+1])/2;
 next; // Barrier
 Swap myNew and myVal
}

Also referred to as a “single program multiple data” (SPMD) pattern
1. double[] gVal = new double[n+2]; gVal[n+1] = 1;
2. double[] gNew = new double[n+2];
3. HjRegion1D iterSpace = new RectangularRegion1D(1,n);
4. int nc = numWorkerThreads();
5. forallPhased(0, nc-1, (jj) -> { // Create nc tasks
6. // Initialize myVal and myNew as local pointers
7. double[] myVal = gVal; double[] myNew = gNew;
8. forseq(0, m-1, (iter) -> {
9. forseq(myGroup(jj, iterSpace, nc), (j) -> {
10. // Compute MyNew as function of input array MyVal
11. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
12. }); // forseq
13. next(); // Barrier before executing next iteration of iter loop
14. // Swap local pointers, myVal and myNew
15. double[] temp = myVal; myVal = myNew; myNew = temp;
16. // myNew becomes input array for next iter
17. }); // forseq
18. }); // forall
Single Program Multiple Data (SPMD)

Basic idea

- Run the same code (program) on P workers
- Use the “rank” --- an ID ranging from 0 to (P-1) --- to determine what data is processed by which worker
 - Hence, “single-program” and “multiple-data”
 - Rank is equivalent to index in a top-level “forall (point[i] : [0:P-1])” loop
- Lower-level programming model than dynamic async/finish parallelism
 - Programmer’s code is essentially at the worker level (each forall iteration is like a worker), and work distribution is managed by programmer by using barriers and other synchronization constructs
 - Harder to program but can be more efficient for restricted classes of applications (e.g. for OneDimAveraging, but not for NQueens)
- Convenient for hardware platforms that are not amenable to efficient dynamic task parallelism
 - General-Purpose Graphics Processing Unit (GPGPU) accelerators
 - Distributed-memory parallel machines
Instead of async-finish, this SPMD version creates one task per worker, uses myGroup() to distribute work, and use barriers to synchronize workers.