
COMP 322: Parallel and Concurrent Programming

Lecture 4: Lazy Computation

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 4 17 January 2024

http://comp322.rice.edu

Lazy computation

COMP 322, Spring 2024 (M. Joyner)

Lazy evaluation

Logging library
Log.i(TAG, "current input: " + input.toString()); // eager 

3

Log.i(TAG, ()->"current input: " + input.toString()); // lazy

Why lazy?
Maybe it’s expensive to compute something.
Maybe you won’t actually need it (e.g., if you disabled logging).

The idea: defer computation of a value until (and if) you need it.

COMP 322, Spring 2024 (M. Joyner)

Related idea: Memoization
The idea: compute a value once when you need it, then save it.
Deep, powerful idea in computer science (e.g., dynamic programming).

4

public class Lazy<T> {  
 private T contents; 
 private Supplier<T> supplier; 
 
 private Lazy(Supplier<T> supplier) { 
 contents = null; 
 this.supplier = supplier; 
 } 
 
 public T get() { 
 if (contents != null) { 
 return contents; 
 } 
 
 if (supplier != null) { 
 contents = supplier.get(); 
 supplier = null; 
 } 
 
 return contents; 
 }

COMP 322, Spring 2024 (M. Joyner)

If we’ve already computed the answer, return it.

Call the lambda (once), get the result, forget the
lambda.

Lazy memo implementation (simplified)

5

Private constructor (as usual) plus a factory
method (Lazy.of)

COMP 322, Spring 2024 (M. Joyner)

Lazy lists
A lazy list is:
A head value
A lambda returning another lazy list (“tail-value function” or “tail supplier”)

Or:
An Empty list

static <T> LazyList<T> cons(T head, Supplier<LazyList<T>> tailSupplier) {
 return new LazyCons<>(head, tailSupplier);
}

6

COMP 322, Spring 2024 (M. Joyner)

Implementing lazy lists (simplified)
class LazyCons<T> implements LazyList<T> {
 final T head;
 final Lazy<LazyList<T>> tail;

 LazyCons(T head, Supplier<LazyList<T>> tail) {
 this.head = head;
 this.tail = Lazy.of(tail);
 }

 public T head() {
 return head;
 }

 public LazyList<T> tail() {
 return tail.get();
 }

7

a lambda that will return the tail

Build a memo around the tail supplier so
that we only call the lambda once

tail() hides the implementation details

COMP 322, Spring 2024 (M. Joyner)

The payoff? Infinite lists!
 // Make a LazyList of integers starting from i, skipping by step
 public static LazyList<Integer> from(int i, int step) {
 return cons(i,()->from(i+step, step));
 }

 // Make a LazyList consisting of all the same elements
 public static <T> LazyList<T> continually(T s) {
 return cons(s,() -> continually(s));
 }

var wholeNumbers = from(0, 1); // 0, 1, 2, 3…, runs quickly

var evens = wholeNumbers.filter(x -> x % 2 == 0); // 0, 2, 4, 6…, runs quickly

var squares = wholeNumbers.map(x -> x * x); // 0, 1, 4, 9…, runs quickly

var zeros = continually(0); // 0, 0, 0, 0…, runs quickly

var alsoEvens = from(0, 2); // runs quickly

var yetAnotherEvens = wholeNumbers.map(x -> x * 2); // runs quickly

8

COMP 322, Spring 2024 (M. Joyner)

But be careful…
var evens = wholeNumbers.filter(x -> x % 2 == 0); // 0, 2, 4, 6...
var alsoEvens = from(0, 2);

assertEquals(evens, alsoEvens); // never finishes!
You can’t do any operation that requires the entire list!
No length of an infinite list (will never terminate).
You can’t fold an infinite list (will never terminate).
You can’t test list equality (.equals() will go forever as well).

But other operations are just fine.
map, filter, etc.: run in constant time, return a new lazy list.

And if you take() a finite number of elements from an infinite list, you can do anything with it
fold, length, equality, etc.

9

COMP 322, Spring 2024 (M. Joyner)

Lazy Filter
class LazyCons<T> implements LazyList<T> {
 public LazyList<T> filter(Predicate<T> predicate) {
 if (predicate.test(headVal)) {
 return cons(headVal, () -> tail().filter(predicate));
 } else {
 return tail().filter(predicate);
 }
 }
}

10

COMP 322, Spring 2024 (M. Joyner)

Lazy Map
class LazyCons<T> implements LazyList<T> {
 public <R> LazyList<R> map(Function<T, R> f) {
 return cons(f.apply(headVal), ()->tail().map(f));
 }
}

11

COMP 322, Spring 2024 (M. Joyner)

How about take()? That’s lazy too!
class LazyCons<T> implements LazyList<T> {
 public LazyList<T> take(int n) {
 if (n < 1) {
 return empty();
 } else if (n == 1) {
 return cons(headVal, ()-> empty());
 } else {
 return cons(headVal, () -> tail().take(n - 1));
 }
 }
}

12

COMP 322, Spring 2024 (M. Joyner)

fold() cannot be lazy
public <U> U foldRight(U zero, BiFunction<T, U, U> operator) {
 return operator.apply(headVal, tail().foldRight(zero, operator));
}

13

Exact same implementation as GList
fold() is a terminal operation

COMP 322, Spring 2024 (M. Joyner)

When to be lazy? When to be eager?
• Laziness almost always wins (in big-O)
• But the memoization does have a cost.
• If your lists have millions of entries, this starts to matter.
• But at that point, maybe you shouldn’t be using lists.

• Some programming languages are extremely lazy (Haskell).
• No value ever computed until it’s ultimately needed.
• Yet still your computation runs efficiently.

• Java is only lazy when you explicitly use lambdas.

14

COMP 322, Spring 2024 (M. Joyner)

Summary
Sometimes you want to be lazy

• If it’s too expensive to be eager

• If it’s possible that you’ll never need the value

• If it’s hard to keep track of which values you have already computed

Defer the computation to when (and if) you need it
Very easy to do in functional programming
Map, take, etc. run in constant time.

Filter is a bit more complicated, but runs in constant time most of the time
Allows you to create logically infinite data structures
Need to be careful with terminal operations (fold, length, etc.) on infinite data

15

