
COMP 322: Parallel and Concurrent Programming

Lecture 7: Futures

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 7 25 January 2023

http://comp322.rice.edu

public class Lazy<T> { 
 private T contents; 
 private Supplier<T> supplier; 
 
 private Lazy(Supplier<T> supplier) { 
 contents = null; 
 this.supplier = supplier; 
 } 
 
 public T get() { 
 if (contents != null) { 
 return contents; 
 } 
 
 if (supplier != null) { 
 contents = supplier.get(); 
 supplier = null; 
 } 
 
 return contents; 
 }

COMP 322, Spring 2023 (M. Joyner)

If we’ve already computed the answer, return it.

Call the lambda (once), get the result, forget the
lambda.

Lazy memo implementation (simplified)

2

Private constructor (as usual) plus a factory
method (Lazy.of)

public class Lazy<T> { 
 private T contents; 
 private Supplier<T> supplier; 
 
 private Lazy(Supplier<T> supplier) { 
 contents = null; 
 this.supplier = supplier; 
 } 
 
 public T get() { 
 if (contents != null) { 
 return contents; 
 } 
 
 if (supplier != null) { 
 contents = supplier.get(); 
 supplier = null; 
 } 
 
 return contents; 
 }

COMP 322, Spring 2023 (M. Joyner)

From laziness to parallelism

3

Why lazy?
Maybe it’s expensive to compute the contents
Maybe you won’t actually need it

The idea: defer computation of a value until (and if) you need it.

What if?
I know that I will need the contents eventually
But not right now
My framework knows how to execute the supplier in
parallel on spare resources, so I can go do something else
in the meantime

The idea: offload the computation of the contents by
the supplier to spare resources (another core), get the
(hopefully already computed) value when you need it

launchHabaneroApp(() -> {
 var future = future(() -> { // Future task. Returns an HjFuture<String>
 doRandomWork(1000, 2000);
 System.out.println("Done with the future task");
 return "Hello From the Future!”;
 });
 doRandomWork(1500, 2500);
 System.out.println("Done with the main task");
 System.out.println("The future task returned the value " + future.get());
});

COMP 322, Spring 2023 (M. Joyner)

Futures

4

Done with the main task
Done with the future task
The future task returned the value Hello From the Future!

Done with the future task
Done with the main task
The future task returned the value Hello From the Future!

 var future = future(()->. . .)

 doRandomWork(1500, 2500);

 future.get()

COMP 322, Spring 2023 (M. Joyner)

Futures

5

"Hello From the Future!”

"Hello From the Future!”Empty

Main program

// Future task. Returns an HjFuture<String>
 () -> {

 doRandomWork(1000, 2000);

 return "Hello From the Future!”;

 }

Future task

 var future = future(()->. . .)

 doRandomWork(1500, 2500);

 future.get()

COMP 322, Spring 2023 (M. Joyner)

Futures

6

"Hello From the Future!”

"Hello From the Future!”Empty

Main program

// Future task. Returns an HjFuture<String>
 () -> {

 doRandomWork(1000, 2000);

 return "Hello From the Future!”;

 }

Future task

COMP 322, Spring 2023 (M. Joyner)

What is a Future?
Read-only container (just like a Lazy Memo)

Always Empty on creation (just like a Lazy Memo)

Creation completes immediately (just like a Lazy Memo)

Gets computed and filled-in by a lambda (just like a Lazy Memo)

The user calls get() on it to get the value (just like a Lazy Memo)

The lambda to compute the value may be executed in parallel
• Unlike the Lazy Memo

The user may block on the first get() if the value is not ready
• Kind of like the Lazy Memo. The first get() on the Lazy Memo always (kind of) blocks: it has to wait
for the lambda to execute.

Subsequent get() calls complete immediately (just like a Lazy Memo)

7

COMP 322, Spring 2023 (M. Joyner)

Futures
Simple, but an extremely powerful concept in parallel and concurrent programming
Very functional in nature
Almost all languages and frameworks that have any kind of parallel and concurrent
programming have them
JavaScript (Futures), Kotlin (asyncs), Python (futures in Ray on Python), C++
(std::future), Go (closures and goroutines), Scala (futures), C# (Task<T>), Clojure
(future), Ruby (Concurrent::Future), R (future package), Swift (Future)

8

COMP 322, Spring 2023 (M. Joyner)

Example: Two-way parallel sum using Futures
// Parent Task T1 (main program)
// Compute sum1 (lower half) & sum2 (upper half) in parallel
var sum1 = future(() -> { // Future Task T2
 int sum = 0;
 for (int i = 0; i < X.length / 2; i++) sum += X[i];
 return sum;
});
var sum2 = future(() -> { // Future Task T3
 int sum = 0;
 for (int i = X.length / 2; i < X.length; i++) sum += X[i];
 return sum;
});
// Task T1 waits for Tasks T2 and T3 to complete
int total = sum1.get() + sum2.get();

9

COMP 322, Spring 2023 (M. Joyner)

Another way of computing Parallel Sum
// Parent Task T1 (main program)
// Compute sum1 (lower half) & sum2 (upper half) in parallel

// Task T2 (the future task) computes the lower half sum
var sum1 = future(() -> { // Future Task T2
 int sum = 0;
 for (int i = 0; i < X.length / 2; i++) sum += X[i];
 return sum;
});

// Task T1 (the main program) computes the upper half sum
int sum2 = 0;
for (int i = X.length / 2; i < X.length; i++) sum2 += X[i];

// Task T1 waits for Task T2 to complete
int total = sum1.get() + sum2;

10

COMP 322, Spring 2023 (M. Joyner)

Does this work?
// Parent Task T1 (main program)
// Compute sum1 (lower half) & sum2 (upper half) in parallel

// Task T1 (the main program) computes the upper half sum
int sum2 = 0;
for (int i = X.length / 2; i < X.length; i++) sum2 += X[I];

// Task T2 (the future task) computes the lower half sum
var sum1 = future(() -> { // Future Task T2
 int sum = 0;
 for (int i = 0; i < X.length / 2; i++) sum += X[i];
 return sum;
});

// Task T1 waits for Task T2 to complete
int total = sum1.get() + sum2;

11

COMP 322, Spring 2023 (M. Joyner)

static int computeSum(int[] X, int lo, int hi) {
 if (lo > hi) return 0;
 else if (lo == hi) return X[lo];
 else {
 int mid = (lo+hi)/2;
 int sum1 =
 computeSum(X, lo, mid);
 int sum2 =
 computeSum(X, mid+1, hi);

 return sum1 + sum2;
 }
} // computeSum

. . .

int sum = computeSum(X, 0, X.length-1); // main

Recursive Array Sum (Sequential version)

12

Sequential divide-and-conquer pattern:

COMP 322, Spring 2023 (M. Joyner)

static int computeSum(int[] X, int lo, int hi) throws SuspendableException {
 if (lo > hi) return 0;
 else if (lo == hi) return X[lo];
 else {
 int mid = (lo+hi)/2;
 var sum1 = future(() ->
 computeSum(X, lo, mid));
 var sum2 = future(() ->
 computeSum(X, mid+1, hi));
 // Parent now waits for the future values
 return sum1.get() + sum2.get();
 }
} // computeSum

. . .

int sum = computeSum(X, 0, X.length-1); // main

Recursive Array Sum (Future version)

13

Parallel divide-and-conquer pattern:

COMP 322, Spring 2023 (M. Joyner)

Summary
Futures are a highly functional, structured and disciplined way to express and
coordinate concurrent execution
Simple, but powerful concept
Widespread in popular languages and frameworks

14

