COMP 322: Fundamentals of Parallel Programming

Lecture 8: Computation Graphs, Ideal Parallelism

Mack Joyner and Zoran Budimlić
{mjoyner, zoran}@rice.edu

http://comp322.rice.edu
Computation Graphs

- A Computation Graph (CG) captures the dynamic execution of a parallel program, for a specific input
 - CG nodes are “steps” in the program’s execution
 - A step is a sequential subcomputation without any spawned, begin-finish or end-finish operations
 - CG edges represent ordering constraints
 - “Continue” edges define sequencing of steps within a task
 - “Spawn” edges connect parent tasks to child spawned tasks
 - “Join” edges connect the end of each spawned task to its IEF’s end-must finish operations
- All computation graphs must be acyclic
 - It is not possible for a node to depend on itself
- Computation graphs are examples of “directed acyclic graphs” (DAGs)
Which statements can potentially be executed in parallel with each other?

1. `must finish { // F1`
2. `spawn { A; }`
3. `must finish { // F2`
4. `spawn { B1; }`
5. `spawn { B2; }`
6. `} // F2`
7. `B3;`
8. `} // F1`

Key idea: If two statements, X and Y, have *no path of directed edges* from one to the other, then they can run in parallel with each other.
Assume you have 2 washers and 2 dryers. Assume there’s 0 cost to spawn a task.

Place “must finish” blocks and “spawn” blocks around the following tasks:

1. Run load 1 in washer (LW1)
2. Run load 2 in washer (LW2)
3. Run load 1 in dryer (LD1)
4. Run load 2 in dryer (LD2)
Assume you have 2 washers and 2 dryers. Assume there’s 0 cost to spawn a task.

Place “must finish” blocks and “spawn” around the following tasks:

1. must finish { // F1
2. spawn { Run load 1 in washer (LW1) }
3. spawn { Run load 2 in washer (LW2) }
4.} // F1
5. spawn { Run load 1 in dryer (LD1) }
6. spawn { Run load 2 in dryer (LD2) }
Assume you have 2 washers and 2 dryers. Assume there’s 0 cost to spawn a task.

Place “must finish” blocks and “spawn” around the following tasks:

1. must finish { // F1
2. spawn { Run load 1 in washer (LW1); Run load 1 in dryer (LD1) }
3. spawn { Run load 2 in washer (LW2); Run load 2 in dryer (LD2) }
4.} // F1
Draw Computation Graph for Solution
Draw Computation Graph for Solution #1

1. must finish { // F1
2. spawn LW1;
3. spawn LW2;
4.} // F1
5. spawn LD1;
6. spawn LD2;

Key idea: If two statements, X and Y, have **no path of directed edges** from one to the other, then they can run in parallel with each other.
Key idea: If two statements, X and Y, have *no path of directed edges* from one to the other, then they can run in parallel with each other.

Which solution is better?
1. must finish { // F1
2. spawn LW1;
3. spawn LW2;
4.} // F1
5. spawn LD1;
6. spawn LD2;

Key idea: If two statements, X and Y, have *no path of directed edges* from one to the other, then they can run in parallel with each other.
1. must finish { // F1
2. spawn { LW1; LD1 }
3. spawn { LW2; LD2 }
4. } // F1

Key idea: If two statements, X and Y, have *no path of directed edges* from one to the other, then they can run in parallel with each other.
Complexity Measures for Computation Graphs

Define

- \(\text{TIME}(N) = \) execution time of node \(N \)
- \(\text{WORK}(G) = \) sum of \(\text{TIME}(N) \), for all nodes \(N \) in CG \(G \)
 - \(\text{WORK}(G) \) is the total work to be performed in \(G \)
- \(\text{CPL}(G) = \) length of a longest path in CG \(G \), when adding up execution times of all nodes in the path
 - Such paths are called \textit{critical paths}
 - \(\text{CPL}(G) \) is the length of these paths (critical path length, also referred to as the \textit{span} of the graph)
 - \(\text{CPL}(G) \) is also the shortest possible execution time for the computation graph
Ideal Parallelism

- Define ideal parallelism of Computation G Graph as the ratio, \(\text{WORK}(G)/\text{CPL}(G) \)

- Ideal Parallelism only depends on the computation graph, and is the speedup that you can obtain with an unbounded number of processors

Example:
\[
\text{WORK}(G) = 26 \\
\text{CPL}(G) = 11 \\
\text{Ideal Parallelism} = \frac{\text{WORK}(G)}{\text{CPL}(G)} = \frac{26}{11} \approx 2.36
\]

Does ideal parallelism tell us we’ll need at least \(x \) processors and/or at most \(y \) processors to get max speedup?
Ideal Parallelism

• Define ideal parallelism of Computation G Graph as the ratio, WORK(G)/CPL(G)

• Ideal Parallelism only depends on the computation graph, and is the speedup that you can obtain with an unbounded number of processors

Example:
WORK(G) = 26
CPL(G) = 11
Ideal Parallelism = WORK(G)/CPL(G) = 26/11 ~ 2.36

Does ideal parallelism tell us we’ll need at least x processors and/or at most y processors to get max speedup?
Which Computation Graph has more ideal parallelism?

Assume that all nodes have $\text{TIME} = 1$, so $\text{WORK} = 10$ for both graphs.

Computation Graph 1

```
A
  / \  \
B   C   D
  |   |   |
  F   E
  |   |
G   H
```

Computation Graph 2

```
A

/ \  \
B   C

/     \     /
D       E   F

/     \     /
G       H   I

/     \     /
J       J
```
Announcements & Reminders

• IMPORTANT:
 — Watch videos for topics 1.1, 4.5 for next lecture
• HW 1 is due on Friday, Feb 4th
• Quiz 2 is due on Sunday, Feb 6th
• Worksheets due same day by 11:59pm for full credit, before next class for partial credit (0.5)
• Module 1 handout is available
• See course web site for syllabus, work assignments, due dates, …
 • http://comp322.rice.edu