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GUI Events with Java Swing

Swing enables you to build a GUI in Java and respond to user events
Containers (e.g. JFrame)

Components
—JButton
—JLabel
—JTextField

Users interact with the GUI and trigger actions (events)

ActionListeners are setup for a component to respond to the event
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Computation Graphs

» Structured parallelism (finish/async):
Create structured graphs (similar to what structured programming can create)
No high-level data representation: have to share data
Fast implementation, easy to synchronize large # of tasks

» Futures and future tasks:
Easy to construct unstructured, arbitrary graphs
Elegant, functional high-level data representation: futures
Functional, “push” model: “where is the data going to, create futures for those”
Large overhead when handling large # of tasks

* Promises and data-driven tasks:
Easy to construct unstructured, arbitrary graphs with unknown task-promise association
Data-driven, “pull” model: “what data does this DDT depend on, create promises for those”
Can have a faster implementation than futures
Large overhead when handling large # of tasks
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Ordering Constraints and Transitive Edges in a Computation Graph

* The primary purpose of a computation graph is to determine if an ordering constraint exists between
two steps (nodes)

—QObservation: Node A must be performed before node B if there is a path of directed edges
from Aand B

* An edge, X =Y, in a computation graph is said to be transitive if there exists a path of directed edges
from X to Y that does not include the X =Y edge

—Observation: Adding or removing a transitive edge does not change the ordering
constraints in a computation graph
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Reverse Engineering a Computation Graph

Observations:

- Any node with out-degree > 1 must be an async
(must have an outgoing spawn edge)

- Any node with in-degree > 1 must be an end-finish
(must have an incoming join edge

- Adding or removing transitive edges does not impact

ordering constraints
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1.A();

2.finish { // F1
3. async D();
4. B();

5. E();

6. finish { // F2
7. async H() ;
8. F()

9. } // F2

10. G();

11.} // F1
12.C() ;



ldeal Parallelism (Recap)

 Define ideal parallelism of Computation G Graph as the ratio,
WORK(G)/CPL(G)

» ldeal Parallelism only depends on the computation graph, and is
the speedup that you can obtain with an unbounded number of
Processors

Example:

WORK(G) = 26

CPL(G) = 11

ldeal Parallelism = WORK(G)/CPL(G) = 26/11 ~ 2.36
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10

What is the critical path length of this parallel computation?

. finish (() ->{ // F1
async (() ->A); // Boil water & pasta (10)
finish () >{ [/ F2
async (() -> B1); // Chop veggies (5)
async (() -> B2); // Brown meat (10)
}); // F2
B3; // Make pasta sauce (5)
}) // F1

Step B2
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Scheduling of a Computation Graph on a fixed

number of processors

Node label = time(N), for all nodes
N in the graph

NOTE: this schedule achieved a
completion time of 11. Can we

do better?
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Scheduling of a Computation Graph on a fixed
number of processors

* Assume that node N takes TIME(N) regardless of which processor it executes on, and that there is no
overhead for creating parallel tasks

* A schedule specifies the following for each node
—START(N) = start time
—PROC(N) = index of processor in range 1...P

such that

—START(i) + TIME(i) <= STARTY()), for all CG edges from i to | (Precedence constraint)

— A node occupies consecutive time slots in a processor (Non-preemption constraint)

—All nodes assigned to the same processor occupy distinct time slots (Resource constraint)
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Greedy Schedule

*A greedy schedule is one that never forces a processor to be idle when one or more
nodes are ready for execution

* A node Is ready for execution if all its predecessors have been executed
* Observations

— T4, = WORK(QG), for all greedy schedules
— T, = CPL(G), for all greedy schedules

» [(S) = execution time of schedule S for computation graph G on P processors
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Lower Bounds on Execution Time of Schedules

- Let T, = execution time of a schedule for computation graph G on P processors
— T can be different for different schedules, for same values of G and P

* Lower bounds for all greedy schedules
—Capacity bound: Tp = WORK(G)/P
—Critical path bound: Tp = CPL(G)

 Putting them together
—Tp = max(WORK(G)/P, CPL(G))
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Upper Bound on Execution Time of Greedy

Schedules

Theorem [Graham ’66].
Any greedy scheduler achieves

T, < WORK(G)/P + CPL(G)

Proof sketch:
Define a time step to be complete if P processors are
scheduled at that time, or otherwise

# complete time steps = WORK(G)/P

# incomplete time steps < CPL(G)
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Bounding the Performance of Greedy
Schedulers

Combine lower and upper bounds to get
max(WORK(G)/P, CPL(G)) = T, < WORK(G)/P + CPL(G)

Corollary: Any greedy scheduler achieves execution time Ty that is within a factor of 2 of the optimal
time (since max(a,b) and (a+b) are within a factor of 2 of each other, foranya=0,0=0).

Corollary 2: Lower and upper bounds approach the same value whenever:

There’s lots of parallelism, WORK(G)/CPL(G) >> P
Or there’s little parallelism, WORK(G)/CPL(G) << P
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