COMP 322: Parallel and Concurrent Programming

Lecture 11: Scheduling

Mack Joyner mjoyner@rice.edu

http://comp322.rice.edu

Homework 2: GitHub Contributors

GitHub Contributors

GUI Events with Java Swing

- Swing enables you to build a GUI in Java and respond to user events
- Containers (e.g. JFrame)
- Components
 - —JButton
 - -JLabel
 - —JTextField
- Users interact with the GUI and trigger actions (events)
- ActionListeners are setup for a component to respond to the event

GitHub Contributors

GitHub Username	mrjoyner
Password/Token	••••••
Organization	trabian
	Load contributors
Login	Contributions
dhh	3393
jeremy	3352
mpdehaan	3321
josevalim	2501
tenderlove	2268
billdawson	1823
fxn	1600
marshall	1498
vishalduggal	1494
trahianmatt	1/01

Computation Graphs

Structured parallelism (finish/async):

Create structured graphs (similar to what structured programming can create)
No high-level data representation: have to share data
Fast implementation, easy to synchronize large # of tasks

Futures and future tasks:

Easy to construct unstructured, arbitrary graphs
Elegant, functional high-level data representation: futures
Functional, "push" model: "where is the data going to, create futures for those"
Large overhead when handling large # of tasks

Promises and data-driven tasks:

Easy to construct unstructured, arbitrary graphs with unknown task-promise association Data-driven, "pull" model: "what data does this DDT depend on, create promises for those" Can have a faster implementation than futures

Large overhead when handling large # of tasks

Ordering Constraints and Transitive Edges in a Computation Graph

- The primary purpose of a computation graph is to determine if an ordering constraint exists between two steps (nodes)
 - —Observation: Node A must be performed before node B if there is a path of directed edges from A and B
- An edge, $X \to Y$, in a computation graph is said to be transitive if there exists a path of directed edges from X to Y that does not include the $X \to Y$ edge
 - —Observation: Adding or removing a transitive edge does not change the ordering constraints in a computation graph

Reverse Engineering a Computation Graph

Observations:

- Any node with out-degree > 1 must be an async (must have an outgoing spawn edge)
- Any node with in-degree > 1 must be an end-finish (must have an incoming join edge
- Adding or removing transitive edges does not impact ordering constraints

```
1.A();
2.finish { // F1
3. async D();
4. B();
5. E();
6. finish { // F2
7.
     async H();
8. F();
9. } // F2
10. G();
11.} // F1
12.C();
```


Ideal Parallelism (Recap)

- Define ideal parallelism of Computation G Graph as the ratio,
 WORK(G)/CPL(G)
- Ideal Parallelism only depends on the computation graph, and is the speedup that you can obtain with an unbounded number of processors

Example:

WORK(G) = 26 CDL(G) = 11

CPL(G) = 11

Ideal Parallelism = $WORK(G)/CPL(G) = 26/11 \sim 2.36$

What is the critical path length of this parallel computation?

```
    finish (() -> { // F1
    async (() -> A); // Boil water & pasta (10)
    finish (() -> { // F2
    async (() -> B1); // Chop veggies (5)
    async (() -> B2); // Brown meat (10)
    }); // F2
    B3; // Make pasta sauce (5)
    }) // F1
```

Step B1

Step B2

Step A

Step B3

Scheduling of a Computation Graph on a fixed number of processors

Node label = time(N), for all nodes N in the graph

Ε NOTE: this schedule achieved a completion time of 11. Can we

Start time	Proc 1	Proc 2	Proc 3
0	A		
1	В		
2	С	N	
3	D	N	I
4	D	N	J
5	D	N	K
6	D	Q	L
7	E	R	M
8	F	R	0
9	G	R	Р
10	Н		
11	Completion time = 11		

do better?

Scheduling of a Computation Graph on a fixed number of processors

- Assume that node N takes TIME(N) regardless of which processor it executes on, and that there is no overhead for creating parallel tasks
- A schedule specifies the following for each node
 - -START(N) = start time
 - -PROC(N) = index of processor in range 1...P

such that

- —START(i) + TIME(i) <= START(j), for all CG edges from i to j (Precedence constraint)</p>
- —A node occupies consecutive time slots in a processor (Non-preemption constraint)
- —All nodes assigned to the same processor occupy distinct time slots (Resource constraint)

Greedy Schedule

- •A greedy schedule is one that never forces a processor to be idle when one or more nodes are ready for execution
- A node is ready for execution if all its predecessors have been executed
- Observations
 - $-T_1 = WORK(G)$, for all greedy schedules
 - $-T_{\infty} = CPL(G)$, for all greedy schedules
- $T_P(S)$ = execution time of schedule S for computation graph G on P processors

Lower Bounds on Execution Time of Schedules

- Let T_P = execution time of a schedule for computation graph G on P processors
- —T_P can be different for different schedules, for same values of G and P
- Lower bounds for all greedy schedules
 - —Capacity bound: $T_P \ge WORK(G)/P$
 - —Critical path bound: $T_P \ge CPL(G)$
- Putting them together
 - $-T_P \ge \max(WORK(G)/P, CPL(G))$

Upper Bound on Execution Time of Greedy Schedules

Theorem [Graham '66].
Any greedy scheduler achieves

$$T_P \leq WORK(G)/P + CPL(G)$$

Proof sketch:

Define a time step to be complete if P processors are scheduled at that time, or incomplete otherwise

complete time steps ≤ WORK(G)/P

incomplete time steps ≤ CPL(G)

Start time	Proc 1	Proc 2	Proc 3
0	A		
1	В		
2	С	N	
3	D	N	I
4	D	N	J
5	D	N	K
6	D	Q	L
7	E	R	M
8	F	R	0
9	G	R	Р
10	Н		
11			

Bounding the Performance of Greedy Schedulers

Combine lower and upper bounds to get

 $max(WORK(G)/P, CPL(G)) \le T_P < WORK(G)/P + CPL(G)$

Corollary: Any greedy scheduler achieves execution time T_P that is within a factor of 2 of the optimal time (since max(a,b) and (a+b) are within a factor of 2 of each other, for any $a \ge 0, b \ge 0$).

Corollary 2: Lower and upper bounds approach the same value whenever:

There's lots of parallelism, WORK(G)/CPL(G) >> P

Or there's little parallelism, WORK(G)/CPL(G) << P

