COMP 322: Fundamentals of Parallel Programming

Lecture 12: Abstract Metrics, Parallel Speedup and Amdahl’s Law

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 12 February 2024

http://comp322.rice.edu

Abstract Performance Metrics

Basic ldea
- Count operations of interest, as in big-O analysis, to evaluate parallel algorithms

- Abstraction ignores many overheads that occur on real systems

Calls to doWork()

- Programmer inserts calls of the form, doWork(N) within a task (async, future task or data-driven task) to
indicate abstract execution of N application-specific abstract operation

e.g., inlab 3, we included one call to doWork(1) for each double addition, and ignore the cost of everything
else

Abstract metrics are enabled by calling HjSystemProperty.abstractMetrics.set(true) at start of
program execution

If an HJ program is executed with this option, abstract metrics can be printed at end of program
execution with calls to abstractMetrics().totalWork(), abstractMetrics().criticalPathLength(), and

COMP 322, Spring 2024 (M. Joyner)

53
>

Abstract Performance Metrics

* Pay attention where you put doWork() calls

* What does this mean?

var bottom = future(() -> . . .);
var top = future(() ->. . .)
doWork(1);

return bottom.get() + top.get();

 (Correct:

var bottom = future(() -> . . .);
var top = future(() -> . . .);

var bottomVal = bottom.get();
var topVal = top.get();
doWork(1);

return bottomVal + topVal;

COMP 322, Spring 2024 (M. Joyner)

598
2

Data Races

A data race occurs on location L in a program execution with computation
graph CG if there exist steps (nodes) S1 and S2 in CG such that:

1. S1 does not depend on S2 and S2 does not depend on S1, i.e., S1 and S2
can potentially execute in parallel, and

2. Both S1 and S2 read or write L, and at least one of the accesses is a write.

A data-race is usually considered an error. The result of a read operation in a
data race is undefined. The result of a write operation is undefined if there are
two or more writes to the same location.

Note that our definition of data race includes the case that both S1 and S2
write the same value in location L, even if the data race is benign.

COMP 322, Spring 2024 (M.Joyner)

8
)2

Parallel Speedup

o Define Speedup(P) =T,/ Tp
—rFactor by which P processors speeds up execution time relative to 1 processor, for fixed input size

—For ideal executions without overhead, 1 <= Speedup(P) <= P

—You see this with abstract metrics, but bounds may not hold when measuring real execution times with
real overheads

—Linear speedup
- When Speedup(P) = k*P, for some constantk, 0 <k <1

o [deal Parallelism = WORK/CPL = T,/ T.
= Parallel Speedup on an unbounded (infinite) number of processors

COMP 322, Spring 2024 (M.Joyner)

2

Computation Graph for Recursive Tree approach to computing
Arrav Sum in parallel

K[} A X2 R3] X[4] APl Ko R[7]

N/ N\ N\ N\

@ stride = 1, size =4

X[0] X[2] X[4] A

stride = 2, size = 2

X[0] X[4]
@ stride = 4, size = 1

|

X[0]
Assume greedy schedule, input array size S is a power of 2, each add takes 1 time unit

* \WORK(G) = S-1, and CPL(G) = log2(S)
* Define T(S,P) = parallel execution time for Array Sum with size S on P processors
* Use upper bound T(S,P) <= WORK(G)/P + CPL(G) as a worst-case estimate

T(S,P) <= WORK(G)/P + CPL(G) = (S-1)/P +log2(S) => Speedup(S,P) = T(S,1)/T(S,P) = (S-1)/((S-1)/P + log2(S))

COMP 322, Spring 2024 (M.Joyner)

.}8
2

How many processors should we use?

Define Efficiency(P) = Speedup(P)/ P = T+/(P * Tp)
—Processor efficiency --- figure of merit that indicates how well a parallel program uses available
processors
—For ideal executions without overhead, 1/P <= Efficiency(P) <=1

—Efficiency(P) = 1 (100%) is the best we can hope for

COMP 322, Spring 2024 (M.Joyner)

How many processors should we use?

What should be the minimum efficiency to determine how many processors we should use?

COMP 322, Spring 2024 (M.Joyner)

How many processors should we use?
« Common goal: choose number P for a given input size, S, so that efficiency is at least 0.5 (50%)

* Half-performance metric
—S172 = Input size that achieves Efficiency(P) = 0.5 for a given P
—Figure of merit that indicates how large an input size is needed to obtain efficient parallelism
—A larger value of S12 indicates that the problem is harder to parallelize efficiently

COMP 322, Spring 2024 (M.Joyner)

8
)2

Array Sum: Speedup as a function of array size S and number of
processors P

« Speedup(S,P) = T(S,1)/T(S,P) = (S-1)/((S-1)/P + logz(S))
 Asymptotically, Speedup(S,P) — (S-1)/log2S, as P — infinity

em»Speedup (5=1024) === Speedup (S=2048)

180

E 160 »'~A
N | 140 /
Q | |
_g 120 /

100 : :
(db) ” —\
S | a0 /g i
N | 60 ,

40

20 |

0 -—'uml_.'ﬂ‘

1 2 4 8 16 32 64 128 256 512 1024

Number of processors, P (log scale)

10 COMP 322, Spring 2024 (M.Joyner)

Array Sum: Speedup as a function of array size S and number of
processors P

« Speedup(S,P) = T(S,1)/T(S,P) = (S-1)/((S-1)/P + logz(S))
 Asymptotically, Speedup(S,P) — (S-1)/log2S, as P — infinity

em»Speedup (S=1024) Speedup (5=2048)
Efficiency(P) < 0.5,
180 for P = 256
o | 160 “—— | ==>wasteful to use
N | 140 " more than 256
rot ‘ ~ processors for S=2048
5 | 120 A
O | 100
QO - gy N—
S | 80 > o
@ | 60 7~ > | Efficiency(P) < 0.5,
40 A / \@r P=>128
50 = ==> wasteful to use
st more than 128
0 = ' ' ' ' ' ' | processors for S=1024
1 2 4 8 16 32 64 128 256 512 1024

Number of processors, P (log scale)

11 COMP 322, Spring 2024 (M.Joyner)

12

Amdahl’s Law

If g < 1 is the fraction of WORK in a parallel program that must be executed sequentially for a given
input size S, then the best speedup that can be obtained for that program is Speedup(S,P) < 1/q.

COMP 322, Spring 2024 (M.Joyner)

13

Amdahl’s Law

Upper bound on speedup simplistically assumes that work can be divided into sequential and
parallel portions

—Sequential portion of WORK =g
- also denoted as fg (fraction of sequential work)

—~Parallel portion of WORK = 1-q
- also denoted as f, (fraction of parallel work)

Observation follows directly from critical path length lower bound on parallel execution time
— CPL>=q*T(S,1)
—T(S,P)>=q* T(S,1)
— Speedup(S,P) = T(S,1)/T(S,P) <= 1/q

COMP 322, Spring 2024 (M.Joyner)

lllustration of Amdahl’s Law:
Best Case Speedup as function of Parallel Portion

Amdahl’'s Law
20.00 ——
-
18.00 //
/ Parallel Portion
16.00 7 — 50%
/ — 75%
14.00 90%
/ — 05%
12.00 /
Q- /
3
810.00 / - T
@ I LA
8.00 /
6.00 //
//
2.00 —A——1—
T 2 T S T O O
mmmmmmmmmm
~ NN < o0 O (N LN
i mM O
Number of Processors

COMP 322, Spring 2024 (M.Joyner)

