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Abstract Performance Metrics

Basic ldea
- Count operations of interest, as in big-O analysis, to evaluate parallel algorithms

- Abstraction ignores many overheads that occur on real systems

Calls to doWork()

- Programmer inserts calls of the form, doWork(N) within a task (async, future task or data-driven task) to
indicate abstract execution of N application-specific abstract operation

e.g., inlab 3, we included one call to doWork(1) for each double addition, and ignore the cost of everything
else

Abstract metrics are enabled by calling HjSystemProperty.abstractMetrics.set(true) at start of
program execution

If an HJ program is executed with this option, abstract metrics can be printed at end of program
execution with calls to abstractMetrics().totalWork(), abstractMetrics().criticalPathLength(), and
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Abstract Performance Metrics

* Pay attention where you put doWork() calls

* What does this mean?

var bottom = future(() -> . . .);
var top = future(() ->. . .)
doWork(1);

return bottom.get() + top.get();

 (Correct:

var bottom = future(() -> . . .);
var top = future(() -> . . .);

var bottomVal = bottom.get();
var topVal = top.get();
doWork(1);

return bottomVal + topVal;
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Data Races

A data race occurs on location L in a program execution with computation
graph CG if there exist steps (nodes) S1 and S2 in CG such that:

1. S1 does not depend on S2 and S2 does not depend on S1, i.e., S1 and S2
can potentially execute in parallel, and

2. Both S1 and S2 read or write L, and at least one of the accesses is a write.

A data-race is usually considered an error. The result of a read operation in a
data race is undefined. The result of a write operation is undefined if there are
two or more writes to the same location.

Note that our definition of data race includes the case that both S1 and S2
write the same value in location L, even if the data race is benign.
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Parallel Speedup

o Define Speedup(P) =T,/ Tp
—rFactor by which P processors speeds up execution time relative to 1 processor, for fixed input size

—For ideal executions without overhead, 1 <= Speedup(P) <= P

—You see this with abstract metrics, but bounds may not hold when measuring real execution times with
real overheads

—Linear speedup
- When Speedup(P) = k*P, for some constantk, 0 <k <1

o [deal Parallelism = WORK/CPL = T,/ T.
= Parallel Speedup on an unbounded (infinite) number of processors
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Computation Graph for Recursive Tree approach to computing
Arrav Sum in parallel
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Assume greedy schedule, input array size S is a power of 2, each add takes 1 time unit

* \WORK(G) = S-1, and CPL(G) = log2(S)
* Define T(S,P) = parallel execution time for Array Sum with size S on P processors
* Use upper bound T(S,P) <= WORK(G)/P + CPL(G) as a worst-case estimate

T(S,P) <= WORK(G)/P + CPL(G) = (S-1)/P +log2(S) => Speedup(S,P) = T(S,1)/T(S,P) = (S-1)/((S-1)/P + log2(S))
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How many processors should we use?

Define Efficiency(P) = Speedup(P)/ P = T+/(P * Tp)
—Processor efficiency --- figure of merit that indicates how well a parallel program uses available
processors
—For ideal executions without overhead, 1/P <= Efficiency(P) <=1

—Efficiency(P) = 1 (100%) is the best we can hope for
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How many processors should we use?

What should be the minimum efficiency to determine how many processors we should use?
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How many processors should we use?
« Common goal: choose number P for a given input size, S, so that efficiency is at least 0.5 (50%)

* Half-performance metric
—S172 = Input size that achieves Efficiency(P) = 0.5 for a given P
—Figure of merit that indicates how large an input size is needed to obtain efficient parallelism
—A larger value of S12 indicates that the problem is harder to parallelize efficiently
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Array Sum: Speedup as a function of array size S and number of
processors P

« Speedup(S,P) = T(S,1)/T(S,P) = (S-1)/((S-1)/P + logz(S))
 Asymptotically, Speedup(S,P) — (S-1)/log2S, as P — infinity
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Array Sum: Speedup as a function of array size S and number of
processors P
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Amdahl’s Law

If g < 1 is the fraction of WORK in a parallel program that must be executed sequentially for a given
input size S, then the best speedup that can be obtained for that program is Speedup(S,P) < 1/q.
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Amdahl’s Law

Upper bound on speedup simplistically assumes that work can be divided into sequential and
parallel portions

—Sequential portion of WORK =g
- also denoted as fg (fraction of sequential work)

—~Parallel portion of WORK = 1-q
- also denoted as f, (fraction of parallel work)

Observation follows directly from critical path length lower bound on parallel execution time
— CPL>=q*T(S,1)
—T(S,P)>=q* T(S,1)
— Speedup(S,P) = T(S,1)/T(S,P) <= 1/q
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lllustration of Amdahl’s Law:
Best Case Speedup as function of Parallel Portion
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