
COMP 322: Fundamentals of Parallel Programming

Lecture 14: Data Races, Functional & Structural Determinism

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 14 February 2024

http://comp322.rice.edu

COMP 322, Spring 2024 (M.Joyner)

Parallel Programming Challenges
• Correctness

—New classes of bugs can arise in parallel programming, relative to sequential programming
– Data races, deadlock, livelock

• Performance
—Performance of parallel program depends on underlying parallel system

– Language compiler and runtime system
– Processor structure and memory hierarchy
– Degree of parallelism in program vs. hardware

• Portability
—Functional portability: A buggy program that runs correctly on one system may not run

correctly on another (or even when re-executed on the same system)
—Performance portability: A parallel program that performs well on one system may perform

poorly on another

2

COMP 322, Spring 2024 (M.Joyner)

Data Races
A data race occurs on location L in a program execution with computation graph
CG if there exist steps (nodes) S1 and S2 in CG such that:

1. S1 does not depend on S2 and S2 does not depend on S1, i.e., S1 and S2
can potentially execute in parallel, and

2. Both S1 and S2 read or write L, and at least one of the accesses is a write.

• A data-race is usually considered an error. The result of a read operation in a
data race is undefined. The result of a write operation is undefined if there are
two or more writes to the same location.

• Note that our definition of data race includes the case that both S1 and S2 write
the same value in location L, even if the data race is benign.

• Above definition includes all “potential” data races i.e., we consider it to be a
data race even if S1 and S2 end up executing on the same processor.

3

COMP 322, Spring 2024 (M.Joyner)

Example of a Data Race
1. // Start of Task T0 (main program)

2. sum1 = 0; sum2 = 0; // sum1,sum2 are shared fields

3. async { // Task T1 computes sum of upper half of array

4. for(int i=X.length/2; i < X.length; i++)

5. sum2 += X[i];

6. }
7. // Continue in T0, compute sum of lower half of array

8. for(int i=0; i < X.length/2; i++) sum1 += X[i];

9. return sum1 + sum2;

4

Data race between accesses of sum2 in async and in main program (due to missing finish)

COMP 322, Spring 2024 (M.Joyner)

Recap of Java’s Storage Model

1. static
fields

3. Local
vars

PRIVATE

2. heap
data:

objects,
arrays

SHARED

Java’s storage model contains three memory regions:
1. Static Data: region of memory reserved for variables that are not allocated or

destroyed during a class’ lifetime, such as static fields.
Static fields can be shared among threads/tasks

2. Heap Data: region of memory for all objects and arrays (implicitly/explicitly
created by “new”).

Heap data can be shared among threads/tasks
3. Stack Data: Each time you call a method, Java allocates a new block of

memory called a stack frame to hold its local variables
Local variables are private to a given thread/task
No data races possible on local variables

NOTE: all references (pointers) must point to heap data --- no references can
point to static or stack data

5

COMP 322, Spring 2024 (M.Joyner)

Four Observations related to Data Races
1. Immutability property: there cannot be a data race on shared immutable variables
— A location, L, is immutable if it is only written during initialization, and can only be read

after initialization. In this case, no read can potentially execute in parallel with the write.

• Parallel programming tip: use immutable objects and arrays to avoid data races
—Will require making copies of objects and arrays for updates
—Copying overhead may be prohibitive in some cases, but acceptable in others
—NOTE: future values are also immutable

Example with java.lang.String
finish {
 String s1 = "XYZ";
 async { String s2 = s1.toLowerCase(); ... }
 System.out.println(s1);
}

6

COMP 322, Spring 2024 (M.Joyner)

Example of a Mutable Object

“hi”“high”

• If an object is modified, all references to the object see the new value

7

sb java.lang.StringBuffer

tb

StringBuffer sb = new (“hi”);
StringBuffer tb = sb;
tb.append (“gh”);

Local Variables

Heap Object

COMP 322, Spring 2024 (M.Joyner)

Observations

2. Single-task ownership property: there cannot be a data race on a
location that is only read or written by a single task.

— Define: step S in computation graph CG “owns” location L if S performs a read or write
access on L. If step S belongs to Task T, we can also say that Task T owns L when
executing S.

— Consider a location L that is only owned by steps that belong to the same task, T. Since
all steps in Task T must be connected by continue edges in CG, all reads and writes to
L must be ordered by the dependences in CG. Therefore, no data race is possible on
location L.

• Parallel programming tip: if an object or array needs to be written multiple times after
initialization, then try and restrict its ownership to a single task.

— Will require making copies when sharing the object or array with other tasks.

8

COMP 322, Spring 2024 (M.Joyner)

Example of Single-task ownership with Copying
• If an object or array needs to be written multiple times after initialization, then try and restrict its

ownership to a single task.
—Entails making copies when sharing the object with other tasks.
—As with Immutability, copying overhead may be prohibitive in some cases, but acceptable in others.

• Example
1. finish { // Task T1 owns A
2. int[] A = new int[n]; // ... initialize array A ...
3. // create a copy of array A in B
4. int[] B = new int[A.length]; System.arraycopy(A,0,B,0,A.length);
5. async { // Task T2 owns B
6. computePartialSums(B);// Updates B
7. System.out.println(Arrays.toString(B));
8. }
9. . . .
10. System.out.println(Arrays.toString(A)); //printed by task T1
11.}

9

COMP 322, Spring 2024 (M.Joyner)

Observations (contd)

3. Ownership-transfer property: there cannot be a data race on a location if
all steps that read or write it are totally ordered in CG (i.e., if the steps
belong to a single directed path)

— Think of the ownership of L being ``transferred'' from one step to another, even across
task boundaries, as execution follows the path of dependence edges in the total order.

• Parallel programming tip:
— If an object or array needs to be written multiple times after initialization and also

accessed by multiple tasks, then try and ensure that all the steps that read or write a
location L in the object/array are totally ordered by dependences in CG.

– Ownership transfer is even necessary to support single-task ownership. In the
previous example, since Task T1 initializes array B as a copy of array A, T1 is the
original owner of B. The ownership of B is then transferred from T1 to T2 when Task
T2 is created.

10

COMP 322, Spring 2024 (M.Joyner)

Observations (contd)

4. Local-variable ownership property: there cannot be a data race on a
local variable.

— If L is a local variable, it can only be written by the task in which it is declared (L's
owner). The “implicitly final” semantics for accessing outer local variables ensures that
there is no race condition between the read access in the child task and the write
access in L’s owner (parent task).

• Parallel programming tip:
— You do not need to worry about data races on local variables, since they are not

possible. However, local variables in Java are restricted to contain primitive data types
(such as int) and references to objects and arrays. In the case of object/array
references, be aware that there may be a data race on the underlying object even if
there is no data race on the local variable that refers to (points to) the object.

11

COMP 322, Spring 2024 (M.Joyner)

Functional vs. Structural Determinism

• A parallel program is said to be functionally deterministic if it always computes
the same answer when given the same input

• A parallel program is said to be structurally deterministic if it always produces
the same computation graph when given the same input

• Data-Race-Free Determinism Property
—If a parallel program is written using the constructs learned so far (finish,

async, futures) and is known to be data-race-free, then it must be both
functionally deterministic and structurally deterministic

12

COMP 322, Spring 2024 (M.Joyner)

Example: Sequential search for pattern in text
1. for (int i = 0; i <= N - M; i++) {
2. for (j = 0; j < M; j++) {
3. if (text[i+j] != pattern[j]) break;
4. } // for j
5. if (j == M) {
6. // pattern found
7. // update flag/count/index as needed
8. // exit for-i loop if needed
9. . . .
10. }
11. } // for i

13

COMP 322, Spring 2024 (M.Joyner)

Version 1 of Parallel Search: Count of all occurrences
1. // Count all occurrences
2. a = new Accumulator(SUM, int)
3. finish(a) {
4. for (int ii = 0; ii <= N - M; ii++) {
5. int i = ii;
6. async {
7. for (j = 0; j < M; j++)
8. if (text[i+j] != pattern[j]) break;
9. if (j == M) a.put(1); // Increment count
10. } // async
11. }
12. } // finish
13. print a.get(); // Output

14

COMP 322, Spring 2024 (M.Joyner)

Version 2 of Parallel Search: Existence of an occurrence
1. found = false; // object or static field
2. finish {
3. for (int i = 0; i <= N - M; i++)
4. async {
5. for (j = 0; j < M; j++)
6. if (text[i+j] != pattern[j]) break;
7. if (j == M) found = true;
8. } // for-async
9. } // finish
10. print found // Output

15

COMP 322, Spring 2024 (M.Joyner)

Version 3 of Parallel Search: Index of an occurrence
1. index = -1; // object or static field
2. . . .
3. finish {
4. for (int i = 0; i <= N - M; i++)
5. async {
6. for (j = 0; j < M; j++)
7. if (text[i+j] != pattern[j]) break;
8. if (j == M) index = i; // found at i
9. } // for-async
10. }
11. print index // Output

16

COMP 322, Spring 2024 (M.Joyner)

Version 4 of Parallel Search:
Optimized existence of an occurrence

1. found = false; // object or static field
2. . . .
3. finish {
4. for (int i = 0; i <= N - M; i++) {
5. if (found) break; // Optimization!
6. async {
7. for (j = 0; j < M; j++)
8. if (text[i+j] != pattern[j]) break;
9. if (j == M) found = true;
10. } // async
11. } // for
12. } // finish
13. print found // Output

17

COMP 322, Spring 2024 (M.Joyner)

Version 5 of Parallel Search:
Optimized index of an occurrence

1. index = -1; // // object or static field
2. . . .
3. finish {
4. for (int i = 0; i <= N - M; i++) {
5. if (index != -1) break; // Optimization!
6. async {
7. for (j = 0; j < M; j++)
8. if (text[i+j] != pattern[j]) break;
9. if (j == M) index = i;
10. } // async
11. } // for
12. } // finish
13. print index // Output

18

