Lecture 15: Parallelism for Recursive Data Structures

Zoran Budimlić and Mack Joyner
{zoran, mjoyner}@rice.edu

http://comp322.rice.edu

Some of the slides adopted and modified from: EPCC, The University of Edinburgh, www.epcc.ed.ac.uk
The Divide and Conquer Paradigm

- Important general technique for designing algorithms
- In general, it follows the steps:
 - divide the problem into subproblems
 - recursively solve the subproblems
 - combine solutions to subproblems to get solution to original problem
- Works well for parallelization too
 - IF the subproblems are independent
private static double recursiveMaxParallel(final double[] inX, final int start, final int end) throws SuspendableException {
 if (end - start == 2) {
 doWork(1);
 return 1/inX[end - 1] + 1/inX[start];
 } else if (end == start + 1) {
 return 1/inX[start];
 } else {
 var bottom = future(() -> recursiveMaxParallel(inX, start, (end + start) / 2));
 var top = future(() -> recursiveMaxParallel(inX, (end+start) / 2, end));
 var bVal = bottom.get();
 var tVal = top.get();
 doWork(1);
 return bVal + tVal;
 }
}
Recursive Data

Given a problem described by an algorithm which involves moving through a recursive data structure in a seemingly sequential way, how can the algorithm be modified to expose parallelism?
Context

• Many problems with recursive data structures can be solved with Divide & Conquer
 If this can be used, use it.
 Other algorithms appear to have to move sequentially through the data structure and
 computing the result at each element.

• It’s often possible to re-cast your calculation so that instead of acting on each element in
 the data structure in turn, you can perform modified operations in parallel
 Also known as “Pointer Jumping” or “Recursive Doubling”
Recursive Data: an Example

- Finding roots in a forest

For each node in a forest, compute the root of the tree that contains that node

Sequential Algorithm. $O(n)$

- Step 1: find the roots. $O(n)$
- Step 2: reverse the trees. $O(n)$
- Step 3: do a DFS, starting with the roots. Point each node you find to the root. $O(n)$
Parallel Algorithm: Naive

- Make a DDF out of each node’s “root computed” feature
- Make a data-driven task that depends on parent
- Inside of the DDT, set the node’s root to its parent’s root
- Will process trees and subtrees in parallel, but performance heavily reliant on what the trees look like
- WORK: $O(n)$. CPL: $O(h)$, where h is the height of the tallest tree
Better Parallel Algorithm

- Set each node’s root to its parent
- For each node, set its root to its parent’s root, if it exists
- This can all be done in parallel using N tasks
Better Parallel Algorithm

- For each node’s root starts as its parent
- For each node, set its root to its parent’s root, if it exists
- This can all be done in parallel using N tasks
Better Parallel Algorithm

• Again:
 • For each node, set its root to its parent’s root, if it exists
 • This can all be done in parallel using N tasks again
 • Stop when no more updates can be done
Better Parallel Algorithm

- N tasks in each phase of the computation
- log(h) phases
- Total WORK: \(O(N \log(h)) \)
- CPL: \(O(\log(h)) \)
- By reshaping the algorithm, we have exposed additional parallelism
- We are doing more work, but (hopefully) the added parallelism makes up for it
- But be careful: there is a tipping point

\[N = 1024, \text{ and } h = N, \text{ ideal parallelism } = 1024 \]

With 1 cycle per task, and 1024 processors, we’ll complete the work in 10 cycles
But with less than 10 processors, we’ll need more than 1024 cycles. Worse than sequential!
10 is the “break even” point
Considerations

- Reformulating the problem to ensure that parts of the data structure can be operated on independently usually increases the total amount of work to be performed

 You have to consider this trade-off

- Reformulating the problem may be difficult

 In some cases maybe even impossible

 Often results in less-than intuitive design

 Harder to understand and maintain

- Exposed parallelism may be difficult to exploit

 Too fine-grained

 Requires too much copying
Is There a General Solution?

• Difficult to express, but in general:

 Start from a single element of the data structure
 Try to find the solution for that element by a technique that does not involve waiting for the neighbouring elements to return a full solution, for example:

 Follow pointers of neighbouring elements without actually waiting for them to have computed their ultimate result
 Build up the final result from smaller calculations that can be done locally

• Features of the solution

 Data Decomposition: Usually one element of the data structure per task
 Structure: Loop with finish around body, async for each element. Typical operations: “replace each element’s successor with its successor’s successor”
 Synchronization: Finish ensures each iteration completes before next one begins
Summary

• Divide and Conquer is a great general technique for designing algorithms
• Works well in parallelization tool’em
• Futures and future tasks are a great tool for implementing parallel Divide and Conquer solutions
• Recursive data structures often lend themselves to Divide and Conquer and recursive task parallelism
• Sometimes, the most intuitive algorithm would require traversing the recursive data sequentially
 • In this case, “pointer jumping” might help in parallelization
 • But, it usually creates more work, so there might be a “breaking even” point