
COMP 322: Fundamentals of Parallel Programming

Lecture 20: Barrier Synchronization with Phasers

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 20 February 2023

http://comp322.rice.edu

COMP 322, Spring 2023 (M.Joyner)

Barrier Synchronization: Hello-Goodbye Forall Example (Pseudocode)
forall (0, m - 1, (i) -> {
 int sq = i*i; // NOTE: video used lookup(i) instead
 System.out.println(“Hello from task with square = “ + sq);
 System.out.println(“Goodbye from task with square = “ + sq);
});

Sample output for m = 4:
Hello from task with square = 0
Hello from task with square = 1
Goodbye from task with square = 0
Hello from task with square = 4
Goodbye from task with square = 4
Goodbye from task with square = 1
Hello from task with square = 9
Goodbye from task with square = 9

2

COMP 322, Spring 2023 (M.Joyner)

Hello-Goodbye Forall Example (contd)
forall (0, m - 1, (i) -> {
 int sq = i*i;
 System.out.println(“Hello from task with square = “ + sq);
 System.out.println(“Goodbye from task with square = “ + sq);
});

• Question: how can we transform this code so as to ensure that all tasks say hello before any tasks say
goodbye?

• Statements in red below will need to be moved to solve this problem
 Hello from task with square = 0

Hello from task with square = 1
Goodbye from task with square = 0
Hello from task with square = 4
Goodbye from task with square = 4
Goodbye from task with square = 1
Hello from task with square = 9
Goodbye from task with square = 9

3

COMP 322, Spring 2023 (M.Joyner)

Hello-Goodbye Forall Example (contd)
forall (0, m - 1, (i) -> {

 int sq = i*i;

 System.out.println(“Hello from task with square = “ + sq);

 System.out.println(“Goodbye from task with square = “ + sq);

});

• Question: how can we transform this code so as to ensure that all tasks say hello before any tasks say goodbye?

• Approach 1: Replace the forall loop by two forall loops, one for the hello’s and one for the goodbye’s
— What’s the problem here?

1. // APPROACH 1

2. forall (0, m - 1, (i) -> {

3. int sq = i*i;

4. System.out.println(“Hello from task with square = “ + sq);

5. });

6. forall (0, m - 1, (i) -> {

7. System.out.println(“Goodbye from task with square = “ + sq);

8. });

4

COMP 322, Spring 2023 (M.Joyner)

Hello-Goodbye Forall Example (contd)
forall (0, m - 1, (i) -> {

 int sq = i*i;

 System.out.println(“Hello from task with square = “ + sq);

 System.out.println(“Goodbye from task with square = “ + sq);

});

• Question: how can we transform this code so as to ensure that all tasks say hello before any tasks say goodbye?

• Approach 1: Replace the forall loop by two forall loops, one for the hello’s and one for the goodbye’s
— Problem: Need to communicate local sq values from first forall to the second

1. // APPROACH 1

2. forall (0, m - 1, (i) -> {

3. int sq = i*i;

4. System.out.println(“Hello from task with square = “ + sq);

5. });

6. forall (0, m - 1, (i) -> {

7. System.out.println(“Goodbye from task with square = “ + sq);

8. });

5

COMP 322, Spring 2023 (M.Joyner)

Hello-Goodbye Forall Example (contd)
forall (0, m - 1, (i) -> {

 int sq = i*i;

 System.out.println(“Hello from task with square = “ + sq);

 System.out.println(“Goodbye from task with square = “ + sq);

});

• Question: how can we transform this code so as to ensure that all tasks say hello before any tasks say goodbye?

• Approach 2: Replace the forall loop by two forall loops, one for the hello’s and one for the goodbye’s
— What’s the problem here?

1. // APPROACH 2

2. int[] sq = new int[m];

3. forall (0, m - 1, (i) -> {

4. sq[i] = i*i;

5. System.out.println(“Hello from task with square = “ + sq[i]);

6. });

7. forall (0, m - 1, (i) -> {

8. System.out.println(“Goodbye from task with square = “ + sq[i]);

9. });

6

COMP 322, Spring 2023 (M.Joyner)

Hello-Goodbye Forall Example (contd)

• Question: how can we transform this code so as to ensure that all tasks say hello before any tasks say
goodbye, without having to change the local variable?

• Approach 3: insert a “barrier” (“next” statement) between the hello’s and goodbye’s
1. // APPROACH 3

2. forallPhased (0, m - 1, (i) -> {

3. int sq = i*i;

4. System.out.println(“Hello from task with square = “ + sq);

5. next(); // Barrier

6. System.out.println(“Goodbye from task with square = “ + sq);

7. });

• next -> each forallPhased iteration waits at barrier until all iterations arrive (previous
phase is completed), after which the next phase can start

—Scope of next is the closest enclosing forallPhased statement
—If a forallPhased iteration terminates before executing “next”, then the other iterations don’t wait for it

7

Phase 0

Phase 1

COMP 322, Spring 2023 (M.Joyner)

Impact of barrier on scheduling forallPhased iterations

8

Four
forallPhased
iterations,
each with a
next() barrier

Phase 0 Phase 1

i=0 //A1
i=1 //A2
i=2 //A3
i=3 //A4

SIG

SIG

SIG

WAIT

SIG

WAIT

WAIT

WAIT

next
signal edges

wait edges

next() = SIG + WAIT

next() operation is
modeled in the
Computation Graph
using signal and wait
edges

COMP 322, Spring 2023 (M.Joyner)

forallPhased API’s in HJlib

• static void forallPhased(int s0, int e0, edu.rice.hj.api.HjProcedure<java.lang.Integer> body)

• static <T> void forallPhased(java.lang.Iterable<T> iterable, edu.rice.hj.api.HjProcedure<T> body)

• static void next()

• NOTE:
—All forallPhased API’s include an implicit finish at the end (just like a regular

forall)
—Calls to next() are only permitted in forallPhased(), not in forall()

9

http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module0.html

http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module1.html#forall-int-int-edu.rice.hj.api.HjProcedure-
http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module1.html#forall-java.lang.Iterable-edu.rice.hj.api.HjProcedure-
http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module1.html#next--
http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module0.html

COMP 322, Spring 2023 (M.Joyner)

Observation 1: Scope of synchronization for “next” barrier is its closest
enclosing forallPhased statement

1. forallPhased (0, m - 1, (i) -> {

2. println(“Starting forall iteration ” + i);

3. next(); // Acts as barrier for forallPhased-i

4. forallPhased (0, n - 1, (j) -> {

5. println(“Hello from task (“ + i + “,” + j + “)”);

6. next(); // Acts as barrier for forallPhased-j

7. println(“Goodbye from task (“ + i + “,” + j + “)”);

8. } // forallPhased-j

9. next(); // Acts as barrier for forallPhased-i

10. println(“Ending forallPhased iteration ” + i);

11.}); // forallPhased-i

10

COMP 322, Spring 2023 (M.Joyner)

Observation 2: If a forall iteration terminates before “next”, then other iterations do not
wait for it

11

1. forallPhased (0, m - 1, (i) -> {
2. forseq (0, i, (j) -> {
3. // forall iteration i is executing phase j
4. System.out.println("(" + i + "," + j + ")");
5. next();
6. }); //forseq-j
7. }); //forall-i

• Outer forall-i loop has m iterations, 0…m-1

• Inner sequential j loop has i+1 iterations, 0…i

• Line 4 prints (task,phase) = (i, j) before performing a next operation.

• Iteration i = 0 of the forall-i loop prints (0, 0), performs a next, and then terminates. Iteration i = 1 of the forall-i
loop prints (1,0), performs a next, prints (1,1), performs a next, and then terminates. And so on.

COMP 322, Spring 2023 (M.Joyner)

Barrier Matching for previous example

12

• Iteration i=0 of the forallPhased-i
loop prints (0, 0) in Phase 0,
performs a next, and then ends
Phase 1 by terminating.

• Iteration i=1 of the forallPhased-i
loop prints (1,0) in Phase 0,
performs a next, prints (1,1) in
Phase 1, performs a next, and
then ends Phase 2 by
terminating.

• And so on until iteration i=8 ends
an empty Phase 8 by terminating

Phase 0

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 6

Phase 7

Phase 8

i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7
 | | | | | | | |
(0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0)
 | | | | | | | |
next ----- next ----- next ----- next ----- next ----- next ----- next ----- next
 | | | | | | | |
 | (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1)
 | | | | | | | |
end ----- next ----- next ----- next ----- next ----- next ----- next ----- next
 | | | | | | |

 | (2,2) (3,2) (4,2) (5,2) (6,2) (7,2)
 | | | | | | |
 end ----- next ----- next ----- next ----- next ----- next ----- next

 | | | | | |
 | (3,3) (4,3) (5,3) (6,3) (7,3)

 | | | | | |
 end ----- next ----- next ----- next ----- next ----- next

 | | | | |
 | (4,4) (5,4) (6,4) (7,4)

 | | | | |
 end ----- next ----- next ----- next ----- next

 | | | |
 | (5,5) (6,5) (7,5)

 | | | |
 end ----- next ----- next ----- next

 | | |
 | (6,6) (7,6)

 | | |
 end ----- next ----- next

 | |
 | (7,7)

 | |
 end ----- next

 |
 end

i=0…7 are forall iterations

(i,j) = println output

next = barrier operation

end = termination of a forall iteration

COMP 322, Spring 2023 (M.Joyner)

Observation 3: Different forallPhased iterations may perform “next” at different
program points

1. forallPhased (0, m-1, (i) -> {
2. if (i % 2 == 1) { // i is odd
3. oddPhase0(i);
4. next();
5. oddPhase1(i);
6. } else { // i is even
7. evenPhase0(i);
8. next();
9. evenPhase1(i);
10. } // if-else
11. }); // forall

• Barrier operation synchronizes odd-numbered iterations at line 4 with even-numbered iterations in line 8

• One reason why barriers are “less structured” than finish, async, future

13

Barriers are not statically scoped
— matching barriers may come
from different program points,
and may even be in different
methods!

COMP 322, Spring 2023 (M.Joyner)

Parallelizing loops in Matrix Multiplication example using forall
1. // Parallel version using forall
2. forall(0, n-1, 0, n-1, (i, j) -> {
3. c[i][j] = 0;
4. });
5. forall(0, n-1, 0, n-1, (i, j) -> {
6. forseq(0, n-1, (k) -> {
7. c[i][j] += a[i][k] * b[k][j];
8. });
9. });
10. // Print first element of output matrix
11. println(c[0][0]);

14

c[i,j] = ∑ a[i,k] * b[k,j]
 0 ≤ k < n

COMP 322, Spring 2023 (M.Joyner)

Parallelizing loops in Matrix Multiplication example using forall
1. // Parallel version using forall
2. forallPhased(0, n-1, 0, n-1, (i, j) -> {
3. c[i][j] = 0;
4. next();
5. forseq(0, n-1, (k) -> {
6. c[i][j] += a[i][k] * b[k][j];
7. });
8. });
9. // Print first element of output matrix
10. println(c[0][0]);

15

c[i,j] = ∑ a[i,k] * b[k,j]
 0 ≤ k < n

