Graphs

Graph $G = (V,E)$
- a set of **vertices** and a set of **edges** between vertices

$n = |V|$ (number of vertices)

$m = |E|$ (number of edges)

$D =$ diameter (max #hops between any pair of vertices)

- Edges can be directed or undirected, weighted or not.
- They can even have attributes (i.e. semantic graphs)
- Sequences of edges $<u_1, u_2>, <u_2, u_3>, \ldots, <u_{n-1}, u_n>$ is a **path** from u_1 to u_n. Its **length** is the sum of its weights.
Routing in transportation networks

Road networks, Point-to-point shortest paths: 15 seconds (naïve) → 10 microseconds

Internet and the WWW

• The world-wide web can be represented as a directed graph
 – Web search and crawl: traversal
 – Link analysis, ranking: Page rank and HITS
 – Document classification and clustering

• Internet topologies (router networks) are naturally modeled as graphs
Large-scale data analysis

• Graph abstractions are very useful to analyze complex data sets.
• Sources of data: simulations, experimental devices, the Internet, sensor networks
• Challenges: data size, heterogeneity, uncertainty, data quality

Astrophysics: massive datasets, temporal variations

Bioinformatics: data quality, heterogeneity

Social Informatics: new analytics challenges, data uncertainty

Image sources: (1) http://physics.nmt.edu/images/astro/hst_starfield.jpg (2,3) www.visualComplexity.com
Large Graphs in Biology

Whole genome assembly

A Read Layout

B Overlap Graph

Vertices: reads

C de Bruijn Graph

Vertices: k-mers

26 billion (8B of which are non-erroneous) unique k-mers (vertices) in the hexaploid wheat genome W7984 for k=51

Schatz et al. (2010) Perspective: Assembly of Large Genomes w/2nd-Gen Seq. Genome Res. (figure reference)
Large Graphs in Biology

Whole genome assembly

A Read Layout

R_1: GACCTACA
R_2: ACCTACAA
R_3: CCTACAAG
R_4: CTACAAGT
A: TACAGGT
B: ACAAGTTA
C: CAAGTTAG
X: TACAGTC
Y: ACAAGTCG
Z: CAAGTCCG

B Overlap Graph

Vertices: reads

C de Bruijn Graph

Vertices: k-mers

26 billion (8B of which are non-erroneous) unique k-mers (vertices) in the hexaploit wheat genome W7984 for k=51

Graph Theoretical analysis of Brain Connectivity

Potentially millions of neurons and billions of edges with developing technologies

Schatz et al. (2010) Perspective: Assembly of Large Genomes w/2nd-Gen Seq. Genome Res. (figure reference)
Adjacency List graph representation
Graph Algorithms

• Traversals
 • DFS, BFS

• Finding paths
 • Single-source shortest paths (Dijkstra, Bellman-Ford)
 • All-pairs shortest-paths (Floyd-Warshall)

• Maximal independent sets

• Decomposition (connected components, strongly connected components)

• Maximum cardinality matching

• Connecting
 • Minimum spanning tree
Spanning Tree Definition

- A spanning tree, T, of a connected undirected graph G is:
 - rooted at some vertex of G
 - defined by a parent map for each vertex
 - contains all the vertices of G, i.e. spans all vertices
 - contains exactly $|v| - 1$ edges
 - adding any other edge will create a cycle
 - contains no cycles (a tree!)
- The edges involved in T are a subset of the edges in G
An Example Graph with 4 possible spanning trees rooted at vertex A

Example Undirected Graph:

Spanning Trees (edges are directed from child to parent):

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>null</td>
</tr>
<tr>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>null</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>null</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>null</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>B</td>
</tr>
</tbody>
</table>
Sequential Spanning Tree Algorithm

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. V parent; // output value of parent in spanning tree
4. boolean makeParent(V n) {
5. if (parent == null) { parent = n; return true; }
6. else return false; // return true if n became parent
7. } // makeParent
8. void compute() {
9. for (int i=0; i<neighbors.length; i++) {
10. final V child = neighbors[i];
11. if (child.makeParent(this))
12. child.compute(); // recursive call
13. }
14. } // compute
15. } // class V
16. . . . // main program
17. root.parent = root; // Use self-cycle to identify root
18. root.compute();
19. . . .
Exercise: Parallel Spanning Tree Algorithm using object-based isolated construct

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. V parent; // output value of parent in spanning tree
4. boolean makeParent(V n) {
5. if (parent == null) { parent = n; return true; }
6. else return false; // return true if n became parent
7. } // makeParent
8. void compute() {
9. for (int i=0; i<neighbors.length; i++) {
10. final V child = neighbors[i];
11. if (child.makeParent(this))
12. child.compute(); // recursive call
13. }
14. } // compute
15. } // class V
16. . . . // main program
17. root.parent = root; // Use self-cycle to identify root
18. root.compute();
19. . . .
Exercise: Parallel Spanning Tree Algorithm using object-based isolated construct

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. V parent; // output value of parent in spanning tree
4. boolean makeParent(final V n) {
5. return isolatedWithReturn(this, () -> {
6. if (parent == null) { parent = n; return true; }
7. else return false; // return true if n became parent
8. });
9. } // makeParent
10. void compute() {
11. for (int i=0; i<neighbors.length; i++) {
12. final V child = neighbors[i];
13. if (child.makeParent(this))
14. async(() -> { child.compute(); });
15. }
16. } // compute
17. } // class V
18. ...
19. root.parent = root; // Use self-cycle to identify root
20. finish(() -> { root.compute(); });
21. ...
Minimum Spanning Tree

- For graphs that have edge weights
- Spanning tree with a minimum weight
- Sequential algorithms:
 - Prim’s algorithm: greedy, grow a single tree by adding nodes closest to it
 - Kruskal’s algorithm: greedy, add lightest edges that don’t create a cycle
 - Boruvka’s algorithm: combination of Prim’s and Kruskal’s
 - Can be parallelized
Starting from empty T, choose a vertex at random and initialize

\[V = \{1\}, \ E' = \{\} \]
Prim’s Algorithm

Choose the vertex \(u \) not in \(V \) such that edge weight from \(u \) to a vertex in \(V \) is minimal (greedy!)

\(V = \{1, 3\} \) \(E' = \{(1, 3)\} \)
Prim’s Algorithm

Repeat until all vertices have been chosen

Choose the vertex \(u \) not in \(V \) such that edge weight from \(v \) to a vertex in \(V \) is minimal (greedy!)

\[V = \{1,3,4\} \quad E' = \{(1,3),(3,4)\} \]

\[V = \{1,3,4,5\} \quad E' = \{(1,3),(3,4),(4,5)\} \]

....

\[V = \{1,3,4,5,2,6\} \]

\[E' = \{(1,3),(3,4),(4,5),(5,2),(2,6)\} \]
Prim’s Algorithm

Repeat until all vertices have been chosen

\[V = \{1,3,4,5,2,6\} \]

\[E' = \{(1,3),(3,4),(4,5),(5,2),(2,6)\} \]

Final Cost: \(1 + 3 + 4 + 1 + 1 = 10\)
Kruskal’s Algorithm

- Select edges in order of increasing cost
- Accept an edge to expand tree or forest only if it does not cause a cycle
- Implementation using adjacency list, priority queues and disjoint sets
Kruskal’s Algorithm
Kruskal’s Algorithm
Kruskal’s Algorithm

Diagram of a graph with weighted edges.
Kruskal’s Algorithm
Kruskal’s Algorithm
Kruskal’s Algorithm
Boruvka’s Algorithm

• Combination of Prim’s and Kruskal’s
• Grow a tree (component) by picking the lightest edge connected to it, just like Prim
• Connect the trees when the lightest edge is between them, just like Kruskal
• Growing of each tree can be done in parallel
• Component contraction
 • Each component represented by a single node
 • When connecting two components, contract the edge and make a single node to represent the two
Boruvka’s Algorithm

Animation: Randy Cornell, Texas State University
Boruvka’s Algorithm

Animation: Randy Cornell, Texas State University
Parallel Boruvka’s Algorithm

- Java threads or async tasks picking up components off the worklist
 - You don’t want too many threads of tasks, tune for the machine
 - Worklist has to allow concurrent access
- Grow components in parallel
- When inspecting the closest node to expand the component, have to synchronize
 - Other thread or task could be also accessing it
 - Careful not to introduce deadlock
- When contracting an edge, have to synchronize
- When there’s only a single component left, you are done