
COMP 322: Fundamentals of Parallel Programming

Lecture 26: Java Threads, Locks

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 26 March 2024

http://comp322.rice.edu

COMP 322, Spring 2024 (M.Joyner)

Introduction to Java Threads and the java.lang.Thread class

• Execution of a Java program begins with an instance of Thread created by the
Java Virtual Machine (JVM) that executes the program’s main() method.

• Parallelism can be introduced by creating additional instances of class Thread
that execute as parallel threads.

2

A lambda can be passed
as a Runnable

COMP 322, Spring 2024 (M.Joyner)

start() and join() methods

• A Thread instance starts executing when its start() method is invoked
— start() can be invoked at most once per Thread instance
— As with async, the parent thread can immediately move to the next statement after invoking

t.start()

• A t.join() call forces the invoking thread to wait till thread t completes.
— Lower-level primitive than finish since it only waits for a single thread rather than a collection

of threads
— No restriction on which thread performs a join on which thread, so it is possible to create a

deadlock cycle using join() even when there are no data races

3

COMP 322, Spring 2024 (M.Joyner)

1. // Start of main thread
2. sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields
3. Thread t1 = new Thread(() -> {
4. // Child task computes sum of lower half of array
5. for(int i=0; i < X.length/2; i++) sum1 += X[i];
6. });
7. t1.start();
8. // Parent task computes sum of upper half of array
9. for(int i=X.length/2; i < X.length; i++) sum2 += X[i];
10. // Parent task waits for child task to complete (join)
11. t1.join();
12. return sum1 + sum2;

Two-way Parallel Array Sum
using Java Threads

4

COMP 322, Spring 2024 (M.Joyner)

1. // Start of Task T0 (main program)
2. sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields
3. finish(() -> {
4. async(() -> {
5. // Child task computes sum of lower half of array
6. for(int i=0; i < X.length/2; i++) sum1 += X[i];
7. });
8. // Parent task computes sum of upper half of array
9. for(int i=X.length/2; i < X.length; i++) sum2 += X[i];
10. });
11. // Parent task waits for child task to complete (join)
12. return sum1 + sum2;

Compare with Two-way Parallel Array Sum
using HJ-Lib’s finish & async API’s

5

COMP 322, Spring 2024 (M.Joyner)

HJlib runtime uses Java threads as workers

• HJlib runtime creates a small number of worker threads in a thread pool, typically one per core

• Workers push async’s/continuations into a logical work queue

• when an async operation is performed

• when an end-finish operation is reached

• Workers pull task/continuation work item when they are idle

6

final int numThreads = numWorkerThreads()

COMP 322, Spring 2024 (M.Joyner)

Locking guarantees in Java

• It is preferable to use java.util.concurrent.atomic or HJlib isolated constructs,
since they cannot deadlock

• Locks are needed for more general cases. Basic idea is for JVM to implement
synchronized(a) <stmt> as follows:

1. Acquire lock for object a
2. Execute <stmt>
3. Release lock for object a

• The responsibility for ensuring that the choice of locks correctly implements the
semantics of isolation lies with the programmer.

• The main guarantee provided by locks is that only one thread can hold a given
lock at a time, and the thread is blocked when acquiring a lock if the lock is
unavailable.

7

COMP 322, Spring 2024 (M.Joyner)

Implementation of Java synchronized statements/methods

• Every object has an associated lock

• “synchronized” is translated to matching monitorenter and monitorexit
bytecode instructions for the Java virtual machine

—monitorenter requests “ownership” of the object’s lock
—monitorexit releases “ownership” of the object’s lock

• If a thread performing monitorenter does not gain ownership of the lock
(because another thread already owns it), it is placed in an unordered “entry
set” for the object’s lock

8

COMP 322, Spring 2024 (M.Joyner)

Locks

9

Example of hand-over-hand locking:
• L1.lock() … L2.lock() … L1.unlock() … L3.lock() … L2.unlock() ….

COMP 322, Spring 2024 (M.Joyner)

java.util.concurrent.locks.Lock interface
1. interface Lock {

2. // key methods

3. void lock(); // acquire lock

4. void unlock(); // release lock

5. boolean tryLock(); // Either acquire lock (returns true), or return false if lock is not obtained.

6. // A call to tryLock() never blocks!

7.

8. Condition newCondition(); // associate a new condition

9. }

java.util.concurrent.locks.Lock interface is implemented by java.util.concurrent.locks.ReentrantLock class

10

COMP 322, Spring 2024 (M.Joyner)

Simple ReentrantLock() example

11

==> Importance of including call to unlock() in finally clause!

COMP 322, Spring 2024 (M.Joyner)

What if you want to wait for shared state to satisfy a desired property?
(Bounded Buffer Example)

1. public synchronized void insert(Object item) { // producer
2. // TODO: wait till count < BUFFER SIZE
3. ++count;
4. buffer[in] = item;
5. in = (in + 1) % BUFFER SIZE;
6. // TODO: notify consumers that an insert has been performed
7. }

9. public synchronized Object remove() { // consumer
10. Object item;
11. // TODO: wait till count > 0
12. --count;
13. item = buffer[out];
14. out = (out + 1) % BUFFER SIZE;
15. // TODO: notify producers that a remove() has been performed
16. return item;
17.}

12

COMP 322, Spring 2024 (M.Joyner)

The Java wait() Method
• A thread can perform a wait():

1. the thread releases the object lock
2. thread state is set to blocked
3. thread is placed in the wait set

• Causes thread to wait until another thread invokes the notify() method or the notifyAll()
method for this object.

• Should always be used in a loop

13

COMP 322, Spring 2024 (M.Joyner)

Entry and Wait Sets

14

COMP 322, Spring 2024 (M.Joyner)

The notify() Method
When a thread calls notify(), the following occurs:

1. selects an arbitrary thread T from the wait set
2. moves T to the entry set
3. sets T to Runnable

T can now compete for the object’s lock again

15

COMP 322, Spring 2024 (M.Joyner)

Multiple Notifications

• notify() selects an arbitrary thread from the wait set.

—This may not be the thread that you want to be selected.

—Java does not allow you to specify the thread to be selected

• notifyAll() removes ALL threads from the wait set and places them in the entry
set. This allows the threads to decide among themselves who should proceed
next.

• notifyAll() is a conservative strategy that works best when multiple threads
may be in the wait set

16

COMP 322, Spring 2024 (M.Joyner)

What if you want to wait for shared state to satisfy a desired property?
(Bounded Buffer Example)

1. public synchronized void insert(Object item) { // producer
2. while(count == buffer.length()) wait();
3. ++count;
4. buffer[in] = item;
5. in = (in + 1) % BUFFER SIZE;
6. notify();
7. }

9. public synchronized Object remove() { // consumer
10. Object item;
11. while(count == 0) wait();
12. --count;
13. item = buffer[out];
14. out = (out + 1) % BUFFER SIZE;
15. notify();
16. return item;
17.}

17

COMP 322, Spring 2024 (M.Joyner)

java.util.concurrent.locks.condition interface
• Can be allocated by calling ReentrantLock.newCondition()
• Supports multiple condition variables per lock
• Methods supported by an instance of condition

—void await() // NOTE: like wait() in synchronized statement
– Causes current thread to wait until it is signaled or interrupted
– Variants available with support for interruption and timeout

—void signal() // NOTE: like notify() in synchronized statement
– Wakes up one thread waiting on this condition

—void signalAll() // NOTE: like notifyAll() in synchronized statement
– Wakes up all threads waiting on this condition

• For additional details see
—http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/locks/Condition.html

18

http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/locks/Condition.html

COMP 322, Spring 2024 (M.Joyner)

BoundedBuffer Example using Two Conditions:
full and empty

1. class BoundedBuffer {
2. final Lock lock = new ReentrantLock();
3. final Condition full = lock.newCondition();
4. final Condition empty = lock.newCondition();
5.
6. final Object[] items = new Object[100];
7. int putptr, takeptr, count;
8.
9. . . .

19

COMP 322, Spring 2024 (M.Joyner)

BoundedBuffer Example using Two Conditions:
full and empty (contd)

1. public void put(Object x) throws InterruptedException
2. {
3. lock.lock();
4. try {
5. while (count == items.length) full.await();
6. items[putptr] = x;
7. if (++putptr == items.length) putptr = 0;
8. ++count;
9. empty.signal();
10. } finally {
11. lock.unlock();
12. }
13. }

20

COMP 322, Spring 2024 (M.Joyner)

BoundedBuffer Example using Two Conditions:
full and empty (contd)

1. public Object take() throws InterruptedException
2. {
3. lock.lock();
4. try {
5. while (count == 0) empty.await();
6. Object x = items[takeptr];
7. if (++takeptr == items.length) takeptr = 0;
8. --count;
9. full.signal();
10. return x;
11. } finally {
12. lock.unlock();
13. }
14. }

21

