COMP 322: Parallel and Concurrent Programming

Lecture 29: Dining Philosophers

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

Acknowledgments: CMSC 330 U. Maryland, CS 444 (Clarkson), Dave Johnson (COMP 421), Ken Birman (Cornell)

COMP 322 Lecture 29 March 2023

http://comp322.rice.edu

Liveness Recap

Deadlock: task’s execution remains incomplete due to it being blocked
awaiting some condition

Livelock: two or more tasks repeat the same interactions without making any
progress

Starvation. some task is repeatedly denied the opportunity to make progress

Bounded wait (fairness). each task requesting a resource should only have
to wait for a bounded number of other tasks to “cut in line”

Non-concurrency:.: a task is prevented from making progress due to overly
restrictive resource management

COMP 322, Spring 2023 (M. Joyner)

Deadlock Conditions

Mutual Exclusion

At least one resource that must be held is in non-shareable mode
Hold and wait

There exists a task holding a resource, and waiting for another
No preemption

Resources cannot be preempted
Circular wait

There exists a set of tasks {T1, T2, ... Tn}, such that

T4 is waiting for Tz, To for Ts, and Tn for T

All four conditions must hold for deadlock to occur

COMP 322, Spring 2023 (M. Joyner)

The Dining Philosophers Problem

A classical Synchronization Problem devised by Dijkstra in 1965
Constraints
* Five philosophers either eat or think
* They must have two chopsticks to eat
* Can only use chopsticks on either side of their plate
* No talking permitted
Goals
* Progress guarantees
* Deadlock freedom
* Livelock freedom
* Starvation freedom

* Maximum concurrency (no one should starve if there are available
forks for them)

COMP 322, Spring 2023 (M. Joyner)

General Structure of Dining Philosophers Problem: PseudoCode

1. int numPhilosophers = 5;

2. iInt numChops = numPhilosophers;

3. Chopl[] chop = ... ; // Initialize array of chopsticks
4. for(p in O .. numPhilosophers-1) {

5. async(() ->{

6. while(true) {

7 Think ;

8. Acquire chopsticks;

9 // Left chopstick = chop[p]

10. // Right chopstick = chop[(p-1)%numChops]
11. Eat ;

12. }// while

13. }); // async

14.} // for

COMP 322, Spring 2023 (M. Joyner)

Solution 1: Using Java’s Synchronized Statement

1. iInt numPhilosophers = 5;

2. iInt numChops = numPhilosophers;

3. Chop[] chop = ... ; // Initialize array of chopsticks
4. for(p in O .. numPhilosophers-1) {

5. async(() ->{

6. while(true) {

7. Think ;

8 synchronized(chop[p]) { // get the left chopstick

9. synchronized(chop[(p-1)%enumChops]) { // get the right chopstick
10. Eat ;

11. }

12. }

13. }// while

14. }); // async

15.} // for

COMP 322, Spring 2023 (M. Joyner)

Problems?

What if everyone picks up the left chopstick at the same time?
Deadlock!

Starvation due to deadlock

No livelock

Non-concurrency due to deadlock

COMP 322, Spring 2023 (M. Joyner)

Solution 2: Using Java’s tryLock

1. int numPhilosophers = 5;
2. int numChops = numPhilosophers;
3. Chop[] chop = ... ; // Initialize array of chopsticks
4. for(p in O .. numPhilosophers-1) {
5. async(() ->{
int first = p; int second = (p - 1) % numChops;

6

7. while(true) {
8 Think ;

9 if (Ichop(first|.lock.tryLock()) continue;

if (Ichop[second].lock.tryLock()) {
choplfirst].lock.unLock(),; continue;

}
Eat ;

0
1

2
3.

14. choplfirst].lock.unlock();chop[second].lock.unlock();

5
6
7

} // while
. }); // async
/] for

COMP 322, Spring 2023 (M. Joyner)

Problems?

Everyone picks up the left chopstick at the same time, tries to pick up the right
one, gives up, puts down the left one, and repeat

Livelock!
Starvation due to livelock!
No deadlock

Non-concurrency due to livelock

COMP 322, Spring 2023 (M. Joyner)

8
)2

10

Solution 3: Using Global Isolated

1. int numPhilosophers = 5;

2. iInt numChops = numPhilosophers;

3. Chopl[] chop = ... ; // Initialize array of chopsticks
4. for(p in O .. numPhilosophers-1) {

5. async(() ->{

6. while(true) {

7 Think ;

8. Isolated {

9 Pick up left and right chopsticks,
10. Eat;

1.

12. }// while

13. }); // async

14.} // for

8
B8

COMP 322, Spring 2023 (M. Joyner)

11

Problems?

No deadlock or lovelock possible
Starvation!

No guarantee that a philosopher will ever get to eat, if others are very
hungry and “cut in line” all the time.

Non-concurrency
Only one philosopher can eat at any time

COMP 322, Spring 2023 (M. Joyner)

8
)2

12

Solution 4a: Impose Order

1. int numPhilosophers = 5;
2. int numChops = numPhilosophers;
3. Chop[] chop = ... ; // Initialize array of chopsticks
4. for(p in O .. numPhilosophers-1) {
5. async(() ->{
int first=(p==0)? (p-1) % numChops : p

while(true) {

6
7. intsecond=(p==0)?p:(p-1) % numChops
8
9 Think ;

10. synchronized(chop(first]) {

1. synchronized(chop[second]) {
12. Eat ;

13.)

14. }

15. }// while

16. }); // async

17.} /] for

78
B8

COMP 322, Spring 2023 (M. Joyner)

>

13

Preventing Deadlock by Ordering

It is not possible for all philosophers to have a chopstick

1.

o g A WD

Two philosophers, A and B, must share a chopstick, X, that is “bigger” than all
other chopsticks

. One of them, A, has to pick up X first

B can’t pick up X at this point
B can’t pick up the “smaller” chopstick until X is released

. SO, 4 philosophers left, 5 chopsticks total
. One philosopher must be able to have two chopsticks!

COMP 322, Spring 2023 (M. Joyner)

2

14

Solution 4b: Using tryLock

1. iInt numPhilosophers = 5;

2. int numChops = numPhilosophers;

3. Chop[] chop = ... ; // Initialize array of chopsticks
4. for(p in O .. numPhilosophers-1) {

5. async(() ->{

6. intfirst=(p==0)?(p-1) % numChops : p

7. intsecond=(p==0)?p:(p-1) % numChops

8. while(true) {

9. Think ;

10 if (Ichopl[first].lock.tryLock()) continue;

11 if (Ichop[second].lock.tryLock()) {

12 chopffirst].lock.unLock(),; continue,

13. }

14. Eat ;

15 choplfirst].lock.unlock(),chop[second].lock.unlock(),
16. }// while

17. }); // async

18.} // for

COMP 322, Spring 2023 (M. Joyner)

15

Solution 4c: Using Object-Based Isolation

1. int numPhilosophers = 5;

2. iInt numChops = numPhilosophers;

3. Chopl[] chop = ... ; // Initialize array of chopsticks
4. for(p in O .. numPhilosophers-1) {

5. async(() ->{

6. while(true) {

7 Think ;

8. Isolated (chop[p], chop[(p-1)%numChops){
0. Eat ;

10. }

11. }// while

12. }); // async

13.} // for

8
B8

COMP 322, Spring 2023 (M. Joyner)

16

Problems for 4a, 4b and 4c¢?

No deadlock or lovelock possible
Starvation!

No guarantee that a philosopher will ever get to eat, if others are very
hungry and “cut in line” all the time.

Concurrency

4a: still have a non-concurrency problem. If philosopher O is eating,
philosophers 1-3 could all be holding their left chopstick waiting

4b and 4c: If a philosopher is hungry, and his chopsticks are not used for
eating, he’ll get to eat

COMP 322, Spring 2023 (M. Joyner)

Solution 5: Using Semaphores

1. int numPhilosophers = 5;

. int numChops = numPhilosophers;
“true” parameter creates a

. Chopl[] chop = ... ; // Initialize array of chopsticks semaphore that guarantees

. Semaphore table = new Semaphore(3, true); —_—

. for (i=0;i<numChops;i++) chopli].sem = new Semaphore(1, true);
. for(p in O .. numPhilosophers-1) {
async(() ->{
while(true) {
Think ;
table.acquire(); // At most 3 philosophers at table

- © 0O N O O A~ WN

—t)k
N = O

p = empty place at the table that has nobody on the left
chop|[p].sem.acquire(); // Acquire left chopstick

—h
o

chop[(p-1)%numChops].sem.acquire(); // Acquire right chopstick
Eat ;

15. chop[p].sem.release(); chop[(p-1)%numChops].sem.release();
16. table.releasg(),

17. }// while

18. }); // async

19.} // for

—h
B

COMP 322, Spring 2023 (M. Joyner)

