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Graphs

n=|V| (number of vertices)
m=|E| (number of edges)
D=diameter (max #hops between any pair of vertices)
• Edges can be directed or undirected, weighted or not.
• They can even have attributes (i.e. semantic graphs)
• Sequences of edges <u1,u2>, <u2,u3>, … ,<un-1,un> is a path from u1 to un. 

Its length is the sum of its weights.
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Graph G = (V,E)
- a set of vertices and a set of edges 

between vertices

Edge
Vertex
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Routing in transportation networks

Road networks, Point-to-point shortest paths: 15 seconds (naïve)   10 microseconds
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H. Bast et al., “Fast Routing in Road Networks with Transit Nodes”, Science 27, 2007.
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Internet and the WWW

• The world-wide web can be represented as a directed graph
—Web search and crawl: traversal
—Link analysis, ranking: Page rank and HITS
—Document classification and clustering

• Internet topologies (router networks) are naturally modeled as graphs
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Adjacency List graph representation
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Graph Algorithms
• Traversals

• DFS, BFS

• Finding paths
• Single-source shortest paths (Dijkstra, Bellman-Ford)

• All-pairs shortest-paths (Floyd-Warshall)

• Maximal independent sets

• Decomposition (connected components, strongly connected components)

• Maximum cardinality matching

• Connecting
• Minimum spanning tree
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Spanning Tree Definition

• A spanning tree, T, of a connected undirected graph G is

• rooted at some vertex of G

• defined by a parent map for each vertex

• contains all the vertices of G, i.e. spans all vertices

• contains exactly |v| - 1 edges

• adding any other edge will create a cycle

• contains no cycles (a tree!)

• The edges involved in T are a subset of the edges in G
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An Example Graph with 4 possible spanning trees rooted at 
vertex A
A B

C D

A B

C D

A B

C D
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A B
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Vertex Parent
A null
B D
C A
D C

Vertex Parent
A null
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Vertex Parent
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Vertex Parent
A null
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Example Undirected Graph:

Spanning Trees (edges are directed from child to parent):
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1. class V  {
2.   V [] neighbors; // adjacency list for input graph
3.   V parent; // output value of parent in spanning tree
 
4.   boolean makeParent(V n) {
5.     if (parent == null) { parent = n; return true; }
6.     else return false; // return true if n became parent
7.   } // makeParent
 
8.   void compute() {
9.     for (int i=0; i<neighbors.length; i++) { 
10.       final V child = neighbors[i];  
11.       if (child.makeParent(this))
12.         child.compute(); // recursive call
13.      } 
14.   } // compute
15. } // class V
16. . . . // main program
17. root.parent = root; // Use self-cycle to identify root
18. root.compute();
19. . . .

Sequential Spanning Tree Algorithm
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1. class V  {
2.   V [] neighbors; // adjacency list for input graph
3.   V parent; // output value of parent in spanning tree
 
4.   boolean makeParent(V n) {
5.     if (parent == null) { parent = n; return true; }
6.     else return false; // return true if n became parent
7.   } // makeParent
 
8.   void compute() {
9.     for (int i=0; i<neighbors.length; i++) { 
10.       final V child = neighbors[i];  
11.       if (child.makeParent(this))
12.         child.compute(); // recursive call
13.      } 
14.   } // compute
15. } // class V
16. . . . // main program
17. root.parent = root; // Use self-cycle to identify root
18. root.compute();
19. . . .

Exercise: Parallel Spanning Tree Algorithm using 
object-based isolated construct
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Minimum Spanning Tree
• For graphs that have edge weights

• Spanning tree with a minimum weight

• Sequential algorithms:

• Prim’s algorithm: greedy, grow a single tree by adding nodes closest to it

• Kruskal’s algorithm: greedy, add lightest edges that don’t create a cycle

• Boruvka’s algorithm: combination of Prim’s and Kruskal’s

• Can be parallelized
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Starting from empty T, 
choose a vertex at 
random and initialize 

V = {1), E’ ={}

Prim’s Algorithm
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Choose the vertex u not in 
V such that edge weight 
from u to a vertex in V is 
minimal (greedy!) 

V={1,3} E’= {(1,3) } 

Prim’s Algorithm
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Repeat  until all vertices have 
been chosen 

Choose the vertex u not in V 
such that edge weight from v to a 
vertex in V is minimal (greedy!) 

V= {1,3,4} E’= {(1,3),(3,4)} 

V={1,3,4,5} E’={(1,3),(3,4),(4,5)} 

…. 

V={1,3,4,5,2,6} 

E’={(1,3),(3,4),(4,5),(5,2),(2,6)}

Prim’s Algorithm
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Repeat  until all vertices have 
been chosen 

V={1,3,4,5,2,6} 

E’={(1,3),(3,4),(4,5),(5,2),(2,6)}  

Final Cost: 1 + 3 + 4 + 1 + 1 = 10

Prim’s Algorithm
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• Select edges in order of increasing cost

• Accept an edge to expand tree or forest only if it does not cause a cycle

• Implementation using adjacency list, priority queues and disjoint sets
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Kruskal’s Algorithm
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Kruskal’s Algorithm



COMP 322, Spring 2024 (M. Joyner)20

1

2 3 4

6 5

10
1

5

8 3

1 1 6

2

4

Kruskal’s Algorithm



COMP 322, Spring 2024 (M. Joyner)21

1

2 3 4

6 5

10
1

5

8 3

1 1 6

2

4
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Boruvka’s Algorithm
• Combination of Prim’s and Kruskal’s

• Grow a tree (component) by picking the lightest edge connected to it, just like 
Prim

• Connect the trees when the lightest edge is between them, just like Kruskal

• Growing of each tree can be done in parallel

• Component contraction
• Each component represented by a single node
• When connecting two components, contract the edge and make a single 

node to represent the two
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Boruvka’s Algorithm

Animation: Randy Cornell, Texas State University
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Parallel Boruvka’s Algorithm
• Java threads or async tasks picking up components off the worklist
• You don’t want too many threads of tasks, tune for the machine
• Worklist has to allow concurrent access

• Grow components in parallel

• When inspecting the closest node to expand the component, have to 
synchronize
• Other thread or task could be also accessing it
• Careful not to introduce deadlock

• When contracting an edge, have to synchronize

• When there’s only a single component left, you are done


