COMP 322: Parallel and Concurrent Programming

Lecture 30: Parallel Graph Algorithms

Mack Joyner
mjoyner@rice.edu
http://comp322.rice.edu

Some slides in this presentation are adopted from Aydin Buluç: "Parallel Graph Algorithms", LBNL, CS267, Spring 2016, Hall Perkins, "Data Structures", CSE 374, University of Washington

Graphs

Edge
$\mathrm{n}=\mathrm{IVI}$ (number of vertices)
$\mathrm{m}=\mid \mathrm{El}$ (number of edges)
D=diameter (max \#hops between any pair of vertices)

- Edges can be directed or undirected, weighted or not.
- They can even have attributes (i.e. semantic graphs)
- Sequences of edges $\left.\left\langle u_{1}, u_{2}\right\rangle,<u_{2}, u_{3}>, \ldots,<u_{n-1}, u_{n}\right\rangle$ is a path from u_{1} to u_{n}. Its length is the sum of its weights.

Routing in transportation networks

Driving Directions

To: Washington, D.C.

A) | Berkeley, CA |
| :--- |
| Edit or drag the route : Save this location |

A A-B: 2809.3 miles, 40 hr 10 min \& Add to route
1 Depart Mivia St 0.2 miles
2 Turn left onto University Ave 1.8 miles Pass 76 in 0.6 mi 1.8 miles

3 Take ramp right for I-80 West / / -580 1.3 miles East / Eastshore Fwy tow
Richmond / Sacramento
Keep left to stay on I-80 East Eastshore Fwy

5 Take ramp right for $1-80$ East toward 651.8 miles Airport / Reno
(i) Entering Nevada

Take ramp for I-15 South / $/-80$ East $\quad 2.8$ miles toward Las Vegas / Cheyenne

At exit 304 , take ramp right for $1-80$ East toward Cheyenne
(i) Entering Wyoming
i. Entering Nebraska
(i) Entering lowa

Road networks, Point-to-point shortest paths: 15 seconds (naïve) $\rightarrow \quad 10$ microseconds
H. Bast et al., "Fast Routing in Road Networks with Transit Nodes", Science 27, 2007.

Internet and the WWW

- The world-wide web can be represented as a directed graph
- Web search and crawl: traversal
- Link analysis, ranking: Page rank and HITS
- Document classification and clustering
- Internet topologies (router networks) are naturally modeled as graphs

Adjacency List graph representation

Graph Algorithms

- Traversals
- DFS, BFS
- Finding paths
- Single-source shortest paths (Dijkstra, Bellman-Ford)
- All-pairs shortest-paths (Floyd-Warshall)
- Maximal independent sets
- Decomposition (connected components, strongly connected components)
- Maximum cardinality matching
- Connecting
- Minimum spanning tree

Spanning Tree Definition

- A spanning tree, T , of a connected undirected graph G is
- rooted at some vertex of G
- defined by a parent map for each vertex
- contains all the vertices of G, i.e. spans all vertices
- contains exactly lvl-1 edges
- adding any other edge will create a cycle
- contains no cycles (a tree!)
- The edges involved in T are a subset of the edges in G

An Example Graph with 4 possible spanning trees rooted at vertex A

Example Undirected Graph:

Spanning Trees (edges are directed from child to parent):

Vertex	Parent
A	null
B	A
C	D
D	B

Vertex	Parent
A	null
B	A
C	A
D	B

Vertex	Parent
A	null
B	A
C	A
D	C

Sequential Spanning Tree Algorithm

```
1. class V {
2. V [] neighbors; // adjacency list for input graph
3. V parent; // output value of parent in spanning tree
4. boolean makeParent(V n) {
5. if (parent == null) { parent = n; return true; }
6. else return false; // return true if n became parent
7. } // makeParent
8. void compute() {
9. for (int i=0; i<neighbors.length; i++) {
10. final V child = neighbors[i];
11. if (child.makeParent(this))
12. child.compute(); // recursive call
13. }
14. } // compute
15. } // class V
16. . . .// main program
17. root.parent = root; // Use self-cycle to identify root
18. root.compute();
19....
```


Exercise: Parallel Spanning Tree Algorithm using object-based isolated construct

```
1. class V {
2. V [] neighbors; // adjacency list for input graph
3. V parent; // output value of parent in spanning tree
4. boolean makeParent(V n) {
5. if (parent == null) { parent = n; return true; }
6. else return false; // return true if n became parent
7. }// makeParent
8. void compute() {
9. for (int i=0; i<neighbors.length; i++) {
10. final V child = neighbors[i];
11. if (child.makeParent(this))
12. child.compute(); // recursive call
13. }
14. } // compute
15. } // class V
16. . . .// main program
17. root.parent = root; // Use self-cycle to identify root
18. root.compute();
19.
```


Minimum Spanning Tree

- For graphs that have edge weights
- Spanning tree with a minimum weight
- Sequential algorithms:
- Prim's algorithm: greedy, grow a single tree by adding nodes closest to it
- Kruskal's algorithm: greedy, add lightest edges that don't create a cycle
- Boruvka's algorithm: combination of Prim's and Kruskal's
- Can be parallelized

Prim's Algorithm

Starting from empty T , choose a vertex at random and initialize

$$
V=\{1), E^{\prime}=\{ \}
$$

Prim's Algorithm

Choose the vertex u not in V such that edge weight from u to a vertex in V is minimal (greedy!)
$V=\{1,3\} \quad E^{\prime}=\{(1,3)\}$

Prim's Algorithm

Repeat until all vertices have been chosen

Choose the vertex u not in V such that edge weight from v to a vertex in V is minimal (greedy!)
$V=\{1,3,4\} E^{\prime}=\{(1,3),(3,4)\}$
$V=\{1,3,4,5\} E^{\prime}=\{(1,3),(3,4),(4,5)\}$
$V=\{1,3,4,5,2,6\}$
$E^{\prime}=\{(1,3),(3,4),(4,5),(5,2),(2,6)\}$

Prim's Algorithm

Repeat until all vertices have been chosen
$V=\{1,3,4,5,2,6\}$
$E^{\prime}=\{(1,3),(3,4),(4,5),(5,2),(2,6)\}$

Final Cost: $1+3+4+1+1=10$

Kruskal's Algorithm

- Select edges in order of increasing cost
- Accept an edge to expand tree or forest only if it does not cause a cycle
- Implementation using adjacency list, priority queues and disjoint sets

Kruskal's Algorithm

Kruskal's Algorithm

Kruskal's Algorithm

Kruskal's Algorithm

Kruskal's Algorithm

Kruskal's Algorithm

Boruvka's Algorithm

- Combination of Prim's and Kruskal's
- Grow a tree (component) by picking the lightest edge connected to it, just like Prim
- Connect the trees when the lightest edge is between them, just like Kruskal
- Growing of each tree can be done in parallel
- Component contraction
- Each component represented by a single node
- When connecting two components, contract the edge and make a single node to represent the two

Boruvka's Algorithm

Animation: Randy Cornell, Texas State University

Parallel Boruvka's Algorithm

- Java threads or async tasks picking up components off the worklist
- You don't want too many threads of tasks, tune for the machine
- Worklist has to allow concurrent access
- Grow components in parallel
- When inspecting the closest node to expand the component, have to synchronize
- Other thread or task could be also accessing it
- Careful not to introduce deadlock
- When contracting an edge, have to synchronize
- When there's only a single component left, you are done

