
COMP 322: Fundamentals of Parallel Programming

Lecture 32: Actors cont.

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 32 April 2023

http://comp322.rice.edu

COMP 322, Spring 2023 (M.Joyner)

Recap of Actors
 Rely on asynchronous messaging
 Message are sent to an actor using its send() method
 Messages queue up in the mailbox
 Messages are processed by an actor after it is started
 Messages are processed asynchronously

—one at a time
—using the body of process()

2

COMP 322, Spring 2023 (M.Joyner)

Simple Pipeline using Actors

3

Stage-1

Filter
even

length
strings

Stage-2

Filter
lowercase

strings

Stage-3

Print results

A
Simple
pipeline
with
3
stages

Simple
pipeline
with
stages

pipeline
with
stages

COMP 322, Spring 2023 (M.Joyner)

ThreadRing (Coordination) Example
1.finish(() -> {
2. int threads = 4;
3. int numberOfHops = 10;
4. ThreadRingActor[] ring =  
 new ThreadRingActor[threads];

5. for(int i=threads-1;i>=0; i--) {
6. ring[i] = new ThreadRingActor(i);
7. ring[i].start();
8. if (i < threads - 1) {
9. ring[i].nextActor(ring[i + 1]);
10. } }
11. ring[threads-1].nextActor(ring[0]);
12. ring[0].send(numberOfHops);
13.}); // finish

4

1.class ThreadRingActor
2. extends Actor<Integer> {
3. private Actor<Integer> nextActor;
4. private final int id;
5. ...
6. public void nextActor( 
 Actor<Object> nextActor) {...}

8. protected void process(Integer n) {
9. if (n > 0) {
10. println("Thread-" + id +
11. " active, remaining = " + n);
12. nextActor.send(n - 1);
13. } else {
14. println("Exiting Thread-"+ id);
15. nextActor.send(-1);
16. exit();
17.} } }

3 1

0

2

COMP 322, Spring 2023 (M.Joyner)

Sieve of Eratosthenes using Actors

5

COMP 322, Spring 2023 (M.Joyner)

Limitations of Actor Model
 Deadlocks possible

—Occurs when all started (but non-terminated) actors have empty mailboxes
 Data races possible when messages include shared objects
 Simulating synchronous replies requires some effort

—e.g., does not support addAndGet()
 Difficult to achieve global consensus

—Finish not supported as first-class primitive

6

COMP 322, Spring 2023 (M.Joyner)

Pipeline and Actors
Pipelined Parallelism:
 Each stage can be represented as an actor
 Stages need to ensure ordering of messages

while processing them
 Slowest stage is a throughput bottleneck

7

COMP 322, Spring 2023 (M.Joyner)

Motivation for Parallelizing Actors
Pipelined Parallelism:

 Reduce effects of slowest stage by introducing
task parallelism.

 Increases the throughput.

8

COMP 322, Spring 2023 (M.Joyner)

Parallelism within an Actor’s process() method
 Use finish construct within process() body and spawn child tasks
 Take care not to introduce data races on local state!

1.class ParallelActor extends Actor<Message> {

2. void process(Message msg) {
3. finish(() -> {
4. async(() -> { S1; });
5. async(() -> { S2; });
6. async(() -> { S3; });
7. });
8. }
9. }

9

COMP 322, Spring 2023 (M.Joyner)

Example of Parallelizing Actors
1. class ArraySumActor extends Actor<Object> {
2. private double resultSoFar = 0;
3. @Override
4. protected void process(final Object theMsg) {
5. if (theMsg != null) {
6. final double[] dataArray = (double[]) theMsg;
7. final double localRes = doComputation(dataArray);
8. resultSoFar += localRes;
9. } else { ... }
10. }
11. private double doComputation(final double[] dataArray) {
12. final double[] localSum = new double[2];
13. finish(() -> { // Two-way parallel sum snippet
14. final int length = dataArray.length;
15. final int limit1 = length / 2;
16. async(() -> {
17. localSum[0] = doComputation(dataArray, 0, limit1);
18. });
19. localSum[1] = doComputation(dataArray, limit1, length);
20. });
21. return localSum[0] + localSum[1];
22. }
23. }

10

COMP 322, Spring 2023 (M.Joyner)

Parallelizing Actors in HJ-Lib
 Two techniques:
–Use finish construct to wrap asyncs in message processing body
•Finish ensures all spawned asyncs complete before next message returning
from process()

–Allow escaping asyncs inside process() method
•WAIT! Won't escaping asyncs violate the one-message-at-a-time rule in
actors
•Solution: Use pause and resume

11

COMP 322, Spring 2023 (M.Joyner)

State Diagram for Extended Actors with Pause-Resume

 Paused state: actor will not process subsequent
messages until it is resumed

 Resume actor when it is safe to process the next
message

 Messages can accumulate in mailbox when actor is in
PAUSED state

NOTE: Calls to exit(), pause(), resume() only impact the
processing of the next message, and not the
processing of the current message. These calls should
just be viewed as “state change” operations.

12

COMP 322, Spring 2023 (M.Joyner)

Actors: pause() operation
 Is a non-blocking operation, i.e. allows the next statement to be executed.

 Calling pause() when the actor is already paused is a no-op.

 Once paused, the state of the actor changes and it will no longer process
messages sent (i.e. call process(message)) to it until it is resumed.

13

COMP 322, Spring 2023 (M.Joyner)

Actors: resume() operation
 Is a non-blocking operation.

 Calling resume() when the actor is not paused is an error, the HJ runtime
will throw a runtime exception.

 Moves the actor back to the STARTED state
 the actor runtime spawns a new asynchronous thread to start processing

messages from its mailbox.

14

COMP 322, Spring 2023 (M.Joyner)

Parallelizing Actors in HJ-Lib
Allow escaping asyncs inside process():

1. class ParallelActor2 extends Actor<Message> {

2. void process(Message msg) {
3. pause(); // process() will not be called until a resume() occurs
4. async(() -> { S1; }); // escaping async
5. async(() -> { S2; }); // escaping async
6. async(() -> {
7. // This async must be completed before next message
8. // Can also use async-await if you want S3 to wait for S1 & S2
9. S3;
10. resume();
11. });
12. }
13. }

15

COMP 322, Spring 2023 (M.Joyner)

Synchronized Reply using Pause/Resume
Actors don’t normally require synchronization with other actors. However, sometimes we might want actors
to be in synch with one another.

16

1.class SynchSenderActor
2. extends Actor<Message> {
3. private Actor otherActor = …
4. void process(Msg msg) {
5. ...
6. DDF<T> ddf = newDDF();
7. otherActor.send(ddf);
8. println("Response received");
9. ...
10.} }

1.class SynchReplyActor
2. extends Actor<DDF> {
3. void process(DDF msg) {
4. ...
5. println("Message received");
6. // process message
7. T responseResult = ...;
8. ...
9.} }

COMP 322, Spring 2023 (M.Joyner)

Synchronized Reply using Pause/Resume
Actors don’t normally require synchronization with other actors. However, sometimes we might want actors
to be in synch with one another.

17

1.class SynchSenderActor
2. extends Actor<Message> {
3. private Actor otherActor = …
4. void process(Msg msg) {
5. ...
6. DDF<T> ddf = newDDF();
7. otherActor.send(ddf);
8. pause(); // non-blocking
9. asyncAwait(ddf, () -> {
10. T synchronousReply = ddf.safeGet();
11. println("Response received");
12. resume(); // non-blocking
13. });
14. ...
15.} }

1.class SynchReplyActor
2. extends Actor<DDF> {
3. void process(DDF msg) {
4. ...
5. println("Message received");
6. // process message
7. T responseResult = ...;
8. msg.put(responseResult);
9. ...
10.} }

