COMP 322: Parallel and Concurrent Programming

Lecture 36: Algorithms Based on Parallel Prefix (Scan) Operations

Mack Joyner
mjoyner@rice.edu
http://comp322.rice.edu

Formalizing Parallel Prefix: Scan operations

- The i-scan operation is an inclusive parallel prefix sum operation.
- The scan operator was introduced in APL in the 1960's, and has been popularized recently in more modern languages, most notably the NESL project in CMU

Formalizing Parallel Prefix: Scan operations

- The e-scan operation is an exclusive parallel prefix sum operation. It takes a binary associative operator \oplus with identity I, and a vector of n elements, $\left[a_{0}, a_{1}, \ldots, a_{n-1}\right]$, and returns the vector $\left[l, a_{0},\left(a_{0} \oplus a_{1}\right), \ldots,\left(a_{0} \oplus a_{1} \oplus \ldots \oplus a_{n-2}\right)\right]$.
- An e-scan can be generated from a i-scan by shifting the vector right by one and inserting the identity. Similarly, the i-scan can be generated from the e-scan by shifting left, and inserting at the end the sum of the last element of the e-scan and the last element of the original vector.

Line-of-Sight Problem

- Problem Statement: given a terrain map in the form of a grid of altitudes and an observation point, X , on the grid, find which points are visible along a ray originating at the observation point. Note that a point on a ray is visible if and only if no other point between it and the observation point has a greater vertical angle.
- Define angle[i] = angle of point i on ray relative to observation point, X (can be computed from altitudes of X and i)
- A max e-scan on angle[*] returns to each point the maximum previous angle.
- Each point can compare its angle with its max e-scan value to determine if it will be visible or not

Segmented Inclusive Scan

Goal: Given a data vector and a flag vector as inputs, compute independent i-scans on segments of the data vector specified by the flag vector.

$$
x_{i}=\left\{\begin{array}{lll}
a_{0} & & i=0 \\
\begin{cases}a_{i} & f_{i}=1 \\
\left(x_{i-1} \oplus a_{i}\right) & f_{i}=0\end{cases} & 0<i<n
\end{array}\right.
$$

$\left.\begin{array}{|llcccccccc|}\hline a & = & {[5} & 1 & 3 & 4 & 3 & 9 & 2 & 6] \\ f & = & {[1} & 0 & 1 & 0 & 0 & 0 & 1 & 0\end{array}\right]$

Binary Addition

This is the pen and paper addition of two 4-bit binary numbers x and y. c represents the generated carries. s represents the produced sum bits.

A stage of the addition is the set of \mathbf{x} and \mathbf{y} bits being used to produce the appropriate sum and carry bits. For example the highlighted bits x_{2}, y_{2} constitute stage 2 which generates carry c_{2} and sum s_{2}.

Each stage i adds bits a_{i}, b_{i}, c_{i-1} and produces bits s_{i}, c_{i} The following hold:

a_{i}	b_{i}	c_{i}	Comment:	Formal definition:	
0	0	0	The stage "kills" an incoming carry.	"Kill" bit:	$k_{i}=\overline{x_{i}+y_{i}}$
0	1	$\mathrm{c}_{\mathrm{i}-1}$	The stage "propagates" an incoming carry	"Propagate" bit:	$p_{i}=x_{i} \oplus y_{i}$
1	0	$\mathrm{c}_{\mathrm{i}-1}$	The stage "propagates" an incoming carry		
1	1	1	The stage "generates" a carry out	"Generate" bit:	$g_{i}=x_{i} \bullet y_{i}$

Binary Addition

a_{i}	b_{i}	c_{i}	Comment:	Formal definition:	
0	0	0	The stage "kills" an incoming carry.	"Kill" bit:	$k_{i}=\overline{x_{i}+y_{i}}$
0	1	$\mathrm{c}_{\mathrm{i}-1}$	The stage "propagates" an incoming carry	"Propagate" bit:	$p_{i}=x_{i} \oplus y_{i}$
1	0	$\mathrm{c}_{\mathrm{i}-1}$	The stage "propagates" an incoming carry		
1	1	1	The stage "generates" a carry out	"Generate" bit:	$g_{i}=x_{i} \bullet y_{i}$

The carry c_{i} generated by a stage i is given by the equation:

$$
c_{i}=\xi_{i}+p_{i} \cdot \mathcal{C}_{i-1}=x_{i} \cdot y_{i}+\left(x_{i} \oplus y_{i}\right) \cdot c_{i-1}
$$

This equation can be simplified to:

$$
c_{i}=x_{i} \cdot y_{i}+\left(x_{i}+y_{i}\right) \cdot c_{i-1}=\xi_{i}+a_{i} \cdot c_{i-1}
$$

The " a_{i} " term in the equation being the "alive" bit.
The later form of the equation uses an OR gate instead of an XOR which is a more efficient gate when implemented in CMOS technology. Note that:

$$
a_{i}=\overline{k_{i}}
$$

Where k_{i} is the "kill" bit defined in the table above.

Binary addition as a prefix sum problem.

- We define a new operator:
- Input is a vector of pairs of 'propagate' and 'generate' bits:

$$
\left(g_{n}, p_{n}\right)\left(g_{n-1}, p_{n-1}\right) \ldots\left(g_{0}, p_{0}\right)
$$

- Output is a new vector of pairs:

$$
\left(G_{n}, P_{n}\right)\left(G_{n-1}, P_{n-1}\right) \ldots\left(G_{0}, P_{0}\right)
$$

- Each pair of the output vector is calculated by the following definition:

$$
\left(G_{i}, P_{i}\right)=\left(g_{i}, p_{i}\right) \circ\left(G_{i-1}, P_{i-1}\right)
$$

Where:

$$
\begin{aligned}
& \left(G_{0}, P_{0}\right)=\left(g_{0}, p_{0}\right) \\
& \left(g_{x}, p_{x}\right) \circ\left(g_{y}, p_{y}\right)=\left(g_{x}+p_{x} \cdot g_{y}, p_{x} \cdot p_{y}\right) \\
& \text { with }+, \quad \text { being the OR, AND operations }
\end{aligned}
$$

1973: Kogge-Stone adder

- The Kogge-Stone adder has:
\square Low depth
\square High node count (implies more area).
\square Minimal fan-out of 1 at each node (implies faster performance).

Summary

- A parallel prefix adder can be seen as a 3-stage process:

- There exist various architectures for the carry calculation part.
- Trade-offs in these architectures involve the
\square area of the adder
\square its depth
\square the fan-out of the nodes
$\square \quad$ the overall wiring network.

