COMP 322: Parallel and Concurrent Programming

Mack Joyner mjoyner@rice.edu

http://comp322.rice.edu

COMP 322

Lecture 36: Algorithms Based on Parallel Prefix (Scan) Operations

Lecture 36

April 2023

Formalizing Parallel Prefix: Scan operations

- The *i*-scan operation is an inclusive parallel prefix sum operation.
- more modern languages, most notably the NESL project in CMU

The scan operator was introduced in APL in the 1960's, and has been popularized recently in

Formalizing Parallel Prefix: Scan operations

- $[I,a_0,(a_0 \oplus a_1),\ldots,(a_0 \oplus a_1 \oplus \ldots \oplus a_{n-2})].$

The e-scan operation is an exclusive parallel prefix sum operation. It takes a binary associative operator \oplus with identity I, and a vector of n elements, [a_0 , a_1 , ..., a_{n-1}], and returns the vector

An e-scan can be generated from a i-scan by shifting the vector right by one and inserting the identity. Similarly, the i-scan can be generated from the e-scan by shifting left, and inserting at the end the sum of the last element of the e-scan and the last element of the original vector.

- point has a greater vertical angle.
- Define angle[i] = angle of point i on ray relative to observation point, X ${\color{black}\bullet}$ (can be computed from altitudes of X and i)
- A max-prescan on angle^[*] returns to each point the maximum previous angle.
- Each point can compare its angle with its max-prescan value to ${\color{black}\bullet}$ determine if it will be visible or not

Problem Statement: given a terrain map in the form of a grid of altitudes and an observation point, X, on the grid, find which points are visible along a ray originating at the observation point. Note that a point on a ray is visible if and only if no other point between it and the observation

Goal: Given a data vector and a flag vector as inputs, compute independent i-scans on segments of the data vector specified by the flag vector.

$$x_i = \begin{cases} a_0 & i = 0\\ \begin{cases} a_i & f_i = 1\\ (x_{i-1} \oplus a_i) & f_i = 0 \end{cases} \quad 0 < i < n$$

$egin{array}{c} a \ f \end{array}$	_	[5]		3 0	9 0		6] 0]
segmented +-scan segmented max-scan	_	[5]5	3 3		19 9	$2 \\ 2$	8] 6]

COMP 322, Spring 2023 (M. Joyner)

Binary Addition

(+	C3 X3	C2 X2	C1 X 1	C 0 X 0	
•	y 3	y 2	y 1	y 0	
S 4	S 3	S 2	S 1	S 0	

Each stage *i* adds bits a_i , b_i , c_{i-1} and produces bits s_i , c_i The following hold:

a _i	b _i	C _i	Comment:	Formal definition:
0	0	0	The stage "kills" an incoming carry.	"Kill" bit: $k_i = \overline{x_i + y_i}$
0	1	C _{i-1}	The stage "propagates" an incoming carry	" Propagate" bit: $p_i = x_i \oplus y_i$
1	0	C _{i-1}	The stage "propagates" an incoming carry	$P_{i} \qquad P_{i} \qquad J_{i}$
1	1	1	The stage "generates" a carry out	"Generate" bit: $g_i = x_i \bullet y_i$

This is the pen and paper addition of two 4-bit binary numbers **x** and **y**. **c** represents the generated carries. **s** represents the produced sum bits.

A stage of the addition is the set of **x** and **y** bits being used to produce the appropriate sum and carry bits. For example the highlighted bits x_2 , y₂ constitute stage 2 which generates carry c_2 and sum s_2 .

Binary Addition

a _i	b _i	C _i	Comment:	Formal definition:
0	0	0	The stage "kills" an incoming carry.	"Kill" bit: $k_i = \overline{x_i + y_i}$
0	1	C _{i-1}	The stage "propagates" an incoming carry	"Propagate" bit: $p - r \oplus y$
1	0	C _{i-1}	The stage "propagates" an incoming carry	$p_i = x_i \oplus y_i$
1	1	1	The stage "generates" a carry out	"Generate" bit: $g_i = x_i \bullet y_i$

The carry c_i generated by a stage *i* is given by the equation:

$$\begin{aligned} c_i &= g_i + p_i \cdot c_{i-1} = x_i \cdot y_i + (x_i \oplus y_i) \cdot c_{i-1} \\ \text{can be simplified to:} \\ c_i &= x_i \cdot y_i + (x_i + y_i) \cdot c_{i-1} = g_i + a_i \cdot c_{i-1} \end{aligned}$$

This equation

$$\begin{aligned} c_i &= g_i + p_i \cdot c_{i-1} = x_i \cdot y_i + (x_i \oplus y_i) \cdot c_{i-1} \\ \text{can be simplified to:} \\ c_i &= x_i \cdot y_i + (x_i + y_i) \cdot c_{i-1} = g_i + a_i \cdot c_{i-1} \end{aligned}$$

The "a_i" term in the equation being the "alive" bit. The later form of the equation uses an OR gate instead of an XOR which is a more efficient gate when implemented in CMOS technology. Note that:

Where k_i is the "kill" bit defined in the table above.

$$a_i = k_i$$

Binary addition as a prefix sum problem.

- We define a new operator: " ° "
- Input is a vector of pairs of 'propagate' and 'generate' bits:

$$(g_n, p_n)(g_{n-1}, p_{n-1})...(g_0, p_0)$$

ector of pairs:

- Output is a new vertex $(G_n, P_n)(G_{n-1}, A)$
- Each pair of the output vector is calculated by the following definition:

 $(G_i, P_i) = (g_i, p_i) \circ (G_{i-1}, P_{i-1})$

Where:

- $(G_0,P_0)=(g_0$ $(g_x, p_x) \circ (g_y)$

$$(P_{n-1}, P_{n-1}) \dots (G_0, P_0)$$

$$(p_y, p_y) = (g_x + p_x \cdot g_y, p_x \cdot p_y)$$

with +, being the OR, AND operations

1973: Kogge-Stone adder

The Kogge-Stone adder has:

- □ Low depth
- High node count (implies more area).
- Minimal fan-out of 1 at each node (implies faster performance).

Summary

A parallel prefix adder can be seen as a 3-stage process:

- There exist various architectures for the carry calculation part.
- Trade-offs in these architectures involve the
 - area of the adder
 - its depth
 - the fan-out of the nodes Г
 - the overall wiring network.

