Lecture 36: Algorithms Based on Parallel Prefix (Scan) Operations

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu
Formalizing Parallel Prefix: Scan operations

- The i-scan operation is an inclusive parallel prefix sum operation.

- The scan operator was introduced in APL in the 1960’s, and has been popularized recently in more modern languages, most notably the NESL project in CMU.
Formalizing Parallel Prefix: Scan operations

- The e-scan operation is an exclusive parallel prefix sum operation. It takes a binary associative operator \oplus with identity I, and a vector of n elements, $[a_0, a_1, ..., a_{n-1}]$, and returns the vector $[I, a_0, (a_0 \oplus a_1), ..., (a_0 \oplus a_1 \oplus ... \oplus a_{n-2})]$.

- An e-scan can be generated from a i-scan by shifting the vector right by one and inserting the identity. Similarly, the i-scan can be generated from the e-scan by shifting left, and inserting at the end the sum of the last element of the e-scan and the last element of the original vector.
Line-of-Sight Problem

- Problem Statement: given a terrain map in the form of a grid of altitudes and an observation point, X, on the grid, find which points are visible along a ray originating at the observation point. Note that a point on a ray is visible if and only if no other point between it and the observation point has a greater vertical angle.

- Define angle[i] = angle of point i on ray relative to observation point, X (can be computed from altitudes of X and i)
- A max-prescan on angle[*] returns to each point the maximum previous angle.
- Each point can compare its angle with its max-prescan value to determine if it will be visible or not
Segmented Inclusive Scan

Goal: Given a data vector and a flag vector as inputs, compute independent i-scans on segments of the data vector specified by the flag vector.

\[x_i = \begin{cases}
 a_0 & i = 0 \\
 a_i & f_i = 1 \\
 (x_{i-1} \oplus a_i) & 0 < i < n \\
 f_i = 0
\end{cases} \]

\[
\begin{array}{cccccccc}
a & = & 5 & 1 & 3 & 4 & 3 & 9 & 2 & 6 \\
f & = & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
\text{segmented +-scan} & = & 5 & 6 & 3 & 7 & 10 & 19 & 2 & 8 \\
\text{segmented max-scan} & = & 5 & 5 & 3 & 4 & 4 & 9 & 2 & 6
\end{array}
\]
Binary Addition

This is the pen and paper addition of two 4-bit binary numbers \(x\) and \(y\).
\(c\) represents the generated carries.
\(s\) represents the produced sum bits.

A stage of the addition is the set of \(x\) and \(y\) bits being used to produce the appropriate sum and carry bits. For example the highlighted bits \(x_2\), \(y_2\) constitute stage 2 which generates carry \(c_2\) and sum \(s_2\).

Each stage \(i\) adds bits \(a_i, b_i, c_{i-1}\) and produces bits \(s_i, c_i\)

The following hold:

<table>
<thead>
<tr>
<th>(a_i)</th>
<th>(b_i)</th>
<th>(c_{i-1})</th>
<th>Comment:</th>
<th>Formal definition:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>The stage “kills” an incoming carry.</td>
<td>“Kill” bit: (k_i = x_i + y_i)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>(c_{i-1})</td>
<td>The stage “propagates” an incoming carry</td>
<td>“Propagate” bit: (p_i = x_i \oplus y_i)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>(c_{i-1})</td>
<td>The stage “propagates” an incoming carry</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>The stage “generates” a carry out</td>
<td>“Generate” bit: (g_i = x_i \cdot y_i)</td>
</tr>
</tbody>
</table>

Slide acknowledgment: Kostas Vitoroulis, Concordia University
Binary Addition

The carry \(c_i \) generated by a stage \(i \) is given by the equation:

\[
c_i = g_i + p_i \cdot c_{i-1} = x_i \cdot y_i + \left(x_i \oplus y_i \right) \cdot c_{i-1}
\]

This equation can be simplified to:

\[
c_i = x_i \cdot y_i + \left(x_i + y_i \right) \cdot c_{i-1} = g_i + a_i \cdot c_{i-1}
\]

The “\(a_i \)” term in the equation being the “alive” bit.

The later form of the equation uses an OR gate instead of an XOR which is a more efficient gate when implemented in CMOS technology. Note that:

\[
a_i = \overline{k_i}
\]

Where \(k_i \) is the “kill” bit defined in the table above.

\(a_i \)	\(b_i \)	\(c_i \)	Comment:	Formal definition:
0	0	0	The stage “kills” an incoming carry.	“Kill” bit: \(k_i = x_i + y_i \)
0	1	\(c_{i-1} \)	The stage “propagates” an incoming carry	“Propagate” bit: \(p_i = x_i \oplus y_i \)
1	0	\(c_{i-1} \)	The stage “propagates” an incoming carry	
1	1	1	The stage “generates” a carry out	“Generate” bit: \(g_i = x_i \cdot y_i \)
Binary addition as a prefix sum problem.

- We define a new operator: “⊙”
- Input is a vector of pairs of ‘propagate’ and ‘generate’ bits:
 \[(g_n, p_n)(g_{n-1}, p_{n-1}) \ldots (g_0, p_0)\]
- Output is a new vector of pairs:
 \[(G_n, P_n)(G_{n-1}, P_{n-1}) \ldots (G_0, P_0)\]
- Each pair of the output vector is calculated by the following definition:
 \[(G_i, P_i) = (g_i, p_i) \circ (G_{i-1}, P_{i-1})\]

Where:
\[(G_0, P_0) = (g_0, p_0)\]
\[(g_x, p_x) \circ (g_y, p_y) = (g_x + p_x \cdot g_y, p_x \cdot p_y)\]

with +, · being the OR, AND operations

Slide acknowledgment: Kostas Vitoroulis, Concordia University
1973: Kogge-Stone adder

The Kogge-Stone adder has:
- Low depth
- High node count (implies more area).
- Minimal fan-out of 1 at each node (implies faster performance).
Summary

- A parallel prefix adder can be seen as a 3-stage process:
 - Pre-calculation of P_i, G_i terms
 - Calculation of the carries.
 - Simple adder to generate the sum

- There exist various architectures for the carry calculation part.
- Trade-offs in these architectures involve the
 - area of the adder
 - its depth
 - the fan-out of the nodes
 - the overall wiring network.

Slide acknowledgment: Kostas Vitoroulis, Concordia University