
COMP 322: Parallel and Concurrent Programming

Lecture 36: Algorithms Based on Parallel Prefix (Scan) Operations

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 36 April 2024

http://comp322.rice.edu

COMP 322, Spring 2024 (M. Joyner)

Formalizing Parallel Prefix: Scan operations

• The i-scan operation is an inclusive parallel prefix sum operation.

• The scan operator was introduced in APL in the 1960’s, and has been popularized recently in
more modern languages, most notably the NESL project in CMU

2

COMP 322, Spring 2024 (M. Joyner)

Formalizing Parallel Prefix: Scan operations

• The e-scan operation is an exclusive parallel prefix sum operation. It takes a binary associative
operator ⊕ with identity I, and a vector of n elements, [a0, a1, ..., an−1], and returns the vector
[I,a0,(a0 ⊕a1),...,(a0 ⊕a1 ⊕…⊕an−2)].

• An e-scan can be generated from a i-scan by shifting the vector right by one and inserting the
identity. Similarly, the i-scan can be generated from the e-scan by shifting left, and inserting at
the end the sum of the last element of the e-scan and the last element of the original vector.

3

COMP 322, Spring 2024 (M. Joyner)

Line-of-Sight Problem

• Problem Statement: given a terrain map in the form of a grid of altitudes and an observation
point, X, on the grid, find which points are visible along a ray originating at the observation point.
Note that a point on a ray is visible if and only if no other point between it and the observation
point has a greater vertical angle.

4

1.3 Line-of-Sight and Radix-Sort 45

procedure line-of-sight(altitude)

in parallel for each index i
angle[i] ← arctan(scale × (altitude[i] - altitude[0])/ i)

max-previous-angle ← max-prescan(angle)

in parallel for each index i
if (angle[i] > max-previous-angle[i])

result[i] ← "visible"

else

result[i] ← not "visible"

FIGURE 1.7

The line-of-sight algorithm for a single ray. The X marks the observation
point. The visible points are shaded. A point on the ray is visible if no
previous point has a greater angle.

in the angle vector (see Figure 1.7). A prescan using the operator maximum

(max-prescan) is then executed on the angle vector, which returns to each point
the maximum previous angle. To test for visibility each point only needs to
compare its angle to the result of the max-prescan. This can be generalized to
finding all visible points on the grid. For n points on a ray, the complexity of
the algorithm is the complexity of the scan, TS(n, p) = O(n/p + lg n) on an
EREW PRAM.

We now consider another example, a radix sort algorithm. The algorithm
loops over the bits of the keys, starting at the lowest bit, executing a split

• Define angle[i] = angle of point i on ray relative to observation point, X
(can be computed from altitudes of X and i)

• A max e-scan on angle[*] returns to each point the maximum previous
angle.

• Each point can compare its angle with its max e-scan value to
determine if it will be visible or not

COMP 322, Spring 2024 (M. Joyner)

Segmented Inclusive Scan
Goal: Given a data vector and a flag vector as inputs, compute independent i-scans on segments of
the data vector specified by the flag vector.

5

COMP 322, Spring 2024 (M. Joyner)

Using Segmented Scan for Quicksort

6

Binary Addition

Each stage ii adds bits ai, bi, ci-1 and produces bits si, ci
The following hold:

y3 y2 y1

x0x1x2x3
+

y0

This is the pen and paper addition of
two 4-bit binary numbers x and y.
c represents the generated carries.
s represents the produced sum bits.

A stage of the addition is the set of
x and y bits being used to produce
the appropriate sum and carry bits.
For example the highlighted bits x2,
y2 constitute stage 2 which
generates carry c2 and sum s2 .

s0s1s2s3

c0c1c2c3

s4

ai bi ci Comment: Formal definition:

0 0 0 The stage “kills” an incoming carry. “Kill” bit:

“Propagate” bit:

“Generate” bit:

0 1 ci-1 The stage “propagates” an incoming carry

1 0 ci-1 The stage “propagates” an incoming carry

1 1 1 The stage “generates” a carry out

iii yxp ⊕=

iii yxk +=

iii yxg •=

7 Slide acknowledgment: Kostas Vitoroulis, Concordia University

Binary Addition

The carry ci generated by a stage ii is given by the equation:

This equation can be simplified to:

The “ai” term in the equation being the “alive” bit.
The later form of the equation uses an OR gate instead of an XOR which is a more efficient gate when implemented
in CMOS technology. Note that:

Where ki is the “kill” bit defined in the table above.

ai bi ci Comment: Formal definition:

0 0 0 The stage “kills” an incoming carry. “Kill” bit:

“Propagate” bit:

“Generate” bit:

0 1 ci-1 The stage “propagates” an incoming carry

1 0 ci-1 The stage “propagates” an incoming carry

1 1 1 The stage “generates” a carry out

() 11 −− ⋅⊕+⋅=⋅+= iiiiiiiii cyxyxcpgc

iii yxp ⊕=

iii yxk +=

iii yxg •=

() 11 −− ⋅+=⋅++⋅= iiiiiiiii cagcyxyxc

ii ka =

8 Slide acknowledgment: Kostas Vitoroulis, Concordia University

Binary addition as a prefix sum problem.

()() ()0011 ,,, pgpgpg nnnn K−−

� We define a new operator: “ ° ”
� Input is a vector of pairs of ‘propagate’ and ‘generate’ bits:

� Output is a new vector of pairs:

� Each pair of the output vector is calculated by the
following definition:

),(),(
:

),(),(),(

0000

11

pgPG
Where

PGpgPG iiiiii

=

= −−o

()() ()0011 ,,, PGPGPG nnnn K−−

operationsANDORthebeingwith

ppgpgpgpg yxyxxyyxx

,,

),(),(),(

⋅+

⋅⋅+=o

9 Slide acknowledgment: Kostas Vitoroulis, Concordia University

1973: Kogge-Stone adder

c1

(p2, g2)(p3, g3)(p4, g4)(p5, g5)(p6, g6)(p7, g7)(p8, g8)

c2c3c4c5c6c7c8

(p1, g1)

� The Kogge-Stone adder has:
� Low depth
� High node count (implies more area).
� Minimal fan-out of 1 at each node (implies faster performance).

10 Slide acknowledgment: Kostas Vitoroulis, Concordia University

Summary (2/3)
� A parallel prefix adder can be seen as a 3-stage process:

� There exist various architectures for the carry calculation part.
� Trade-offs in these architectures involve the

� area of the adder
� its depth
� the fan-out of the nodes
� the overall wiring network.

Pre-calculation of Pi, Gi terms

Calculation of the carries.

Simple adder to generate the sum

Slide acknowledgment: Kostas Vitoroulis, Concordia University

