Lecture 36: Algorithms Based on Parallel Prefix (Scan) Operations

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu
Formalizing Parallel Prefix: Scan operations

• The *i-scan* operation is an inclusive parallel prefix sum operation.

• The scan operator was introduced in APL in the 1960’s, and has been popularized recently in more modern languages, most notably the NESL project in CMU
Formalizing Parallel Prefix: Scan operations

- The e-scan operation is an exclusive parallel prefix sum operation. It takes a binary associative operator \oplus with identity I, and a vector of n elements, $[a_0, a_1, ..., a_{n-1}]$, and returns the vector $[I, a_0, (a_0 \oplus a_1), ..., (a_0 \oplus a_1 \oplus ... \oplus a_{n-2})]$.

- An e-scan can be generated from a i-scan by shifting the vector right by one and inserting the identity. Similarly, the i-scan can be generated from the e-scan by shifting left, and inserting at the end the sum of the last element of the e-scan and the last element of the original vector.
Line-of-Sight Problem

- Problem Statement: given a terrain map in the form of a grid of altitudes and an observation point, X, on the grid, find which points are visible along a ray originating at the observation point. Note that a point on a ray is visible if and only if no other point between it and the observation point has a greater vertical angle.

- Define angle[i] = angle of point i on ray relative to observation point, X (can be computed from altitudes of X and i)
- A max e-scan on angle[*] returns to each point the maximum previous angle.
- Each point can compare its angle with its max e-scan value to determine if it will be visible or not
Segmented Inclusive Scan

Goal: Given a data vector and a flag vector as inputs, compute independent i-scans on segments of the data vector specified by the flag vector.

\[
x_i = \begin{cases}
 a_0 & i = 0 \\
 a_i & f_i = 1 \\
 (x_{i-1} \oplus a_i) & 0 < i < n \\
 f_i = 0
\end{cases}
\]

\(a \)	5	1	3	4	3	9	2	6
\(f \)	1	0	1	0	0	0	1	0
segmented +-scan	5	6	3	7	10	19	2	8
segmented max-scan	5	5	3	4	4	9	2	6
Using Segmented Scan for Quicksort

```plaintext
procedure quicksort(keys)
    seg-flags[0] ← 1
    while not-sorted(keys)
        pivots ← seg-copy(keys, seg-flags)
        f ← pivots <= keys
        keys ← seg-split(keys, f, seg-flags)
        seg-flags ← new-seg-flags(keys, pivots, seg-flags)
```

<table>
<thead>
<tr>
<th>Key</th>
<th>[6.4 9.2 3.4 1.6 8.7 4.1 9.2 3.4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seg-Flags</td>
<td>[1 0 0 0 0 0 0 0]</td>
</tr>
<tr>
<td>Pivots</td>
<td>[6.4 6.4 6.4 6.4 6.4 6.4 6.4]</td>
</tr>
<tr>
<td>F</td>
<td>[= > < > < > <]</td>
</tr>
<tr>
<td>Key ← split(Key, F)</td>
<td>[3.4 1.6 4.1 3.4 6.4 9.2 8.7 9.2]</td>
</tr>
<tr>
<td>Seg-Flags</td>
<td>[1 0 0 0 1 1 0 0]</td>
</tr>
<tr>
<td>Pivots</td>
<td>[3.4 3.4 3.4 3.4 6.4 9.2 9.2 9.2]</td>
</tr>
<tr>
<td>F</td>
<td>[= < > = = = < =]</td>
</tr>
<tr>
<td>Key ← split(Key, F)</td>
<td>[1.6 3.4 3.4 4.1 6.4 8.7 9.2 9.2]</td>
</tr>
<tr>
<td>Seg-Flags</td>
<td>[1 1 0 1 1 1 1 0]</td>
</tr>
</tbody>
</table>
Binary Addition

This is the pen and paper addition of two 4-bit binary numbers x and y. c represents the generated carries. s represents the produced sum bits.

A stage of the addition is the set of x and y bits being used to produce the appropriate sum and carry bits. For example the highlighted bits x_2, y_2 constitute stage 2 which generates carry c_2 and sum s_2.

Each stage i adds bits a_i, b_i, c_{i-1} and produces bits s_i, c_i.

The following hold:

<table>
<thead>
<tr>
<th>a_i</th>
<th>b_i</th>
<th>c_i</th>
<th>Comment:</th>
<th>Formal definition:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>The stage “kills” an incoming carry.</td>
<td>"Kill" bit: $k_i = x_i + y_i$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>c_{i-1}</td>
<td>The stage “propagates” an incoming carry</td>
<td>"Propagate" bit: $p_i = x_i \oplus y_i$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>c_{i-1}</td>
<td>The stage “propagates” an incoming carry</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>The stage “generates” a carry out</td>
<td>"Generate" bit: $g_i = x_i \cdot y_i$</td>
</tr>
</tbody>
</table>
Binary Addition

<table>
<thead>
<tr>
<th>a_i</th>
<th>b_i</th>
<th>c_i</th>
<th>Comment:</th>
<th>Formal definition:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>The stage “kills” an incoming carry.</td>
<td>“Kill” bit: $k_i = x_i + y_i$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>c_{i-1}</td>
<td>The stage “propagates” an incoming carry</td>
<td>“Propagate” bit: $p_i = x_i \oplus y_i$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>c_{i-1}</td>
<td>The stage “propagates” an incoming carry</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>The stage “generates” a carry out</td>
<td>“Generate” bit: $g_i = x_i \cdot y_i$</td>
</tr>
</tbody>
</table>

The carry c_i generated by a stage i is given by the equation:

$$c_i = g_i + p_i \cdot c_{i-1} = x_i \cdot y_i + (x_i \oplus y_i) \cdot c_{i-1}$$

This equation can be simplified to:

$$c_i = x_i \cdot y_i + (x_i + y_i) \cdot c_{i-1} = g_i + a_i \cdot c_{i-1}$$

The “a_i” term in the equation being the “alive” bit.

The later form of the equation uses an OR gate instead of an XOR which is a more efficient gate when implemented in CMOS technology. Note that:

$$a_i = \overline{k_i}$$

Where k_i is the “kill” bit defined in the table above.
Binary addition as a prefix sum problem.

- We define a new operator: “°”
- Input is a vector of pairs of ‘propagate’ and ‘generate’ bits:
 \[(g_n, p_n)(g_{n-1}, p_{n-1})\ldots(g_0, p_0)\]
- Output is a new vector of pairs:
 \[(G_n, P_n)(G_{n-1}, P_{n-1})\ldots(G_0, P_0)\]
- Each pair of the output vector is calculated by the following definition:
 \[(G_i, P_i) = (g_i, p_i) \circ (G_{i-1}, P_{i-1})\]

Where:
\[
(G_0, P_0) = (g_0, p_0) \quad (g_x, p_x) \circ (g_y, p_y) = (g_x + p_x \cdot g_y, p_x \cdot p_y)
\]
with +, being the OR, AND operations.

Slide acknowledgment: Kostas Vitoroulis, Concordia University
1973: Kogge-Stone adder

- The Kogge-Stone adder has:
 - Low depth
 - High node count (implies more area).
 - Minimal fan-out of 1 at each node (implies faster performance).
A parallel prefix adder can be seen as a 3-stage process:

- Pre-calculation of P_i, G_i terms
- Calculation of the carries.
- Simple adder to generate the sum

There exist various architectures for the carry calculation part.

Trade-offs in these architectures involve the
- area of the adder
- its depth
- the fan-out of the nodes
- the overall wiring network.

Slide acknowledgment: Kostas Vitoroulis, Concordia University