
COMP 322: Parallel and Concurrent Programming

Lecture 37: Concurrent and Parallel Languages and Frameworks

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 37 April 2023

http://comp322.rice.edu

COMP 322, Spring 2023 (M. Joyner)

What have we learned in this course?

• Functional programming for parallelism

• Lazy computation, streams

• Futures and promises

• Data-driven programming approach

• Computation graphs and their properties

• Map/Reduce programming model

• Data-parallel programming model

• Loop parallelism

• Locality control

• Handling concurrency while avoiding deadlock/livelock/starvation

• Barrier and point-to-point synchronization

• Actor programming model

2

COMP 322, Spring 2023 (M. Joyner)

Habanero

• Habanero-Java and Habanero-C

• Async/finish, futures/promises, loop parallelism, phasers, locality control, actors, isolation

• HJlib is a library implementation of these features

• Still developed and improved

• Python, Scala, Rust, X10, OpenMP, Chapel, Java, C/C++

• There’s also PCDP-Java

• Coursera equivalent of COMP 322

• No streams

3

https://habanero.cc.gatech.edu/

https://habanero.cc.gatech.edu/

COMP 322, Spring 2023 (M. Joyner)

X10

• Designed and developed at IBM

• One of the original “Next-generation” Asynchronous Partitioned Global Address Space projects

• Ancestor of Habanero Java

• Originally based on Java, later switched to Scala

• Async, finish, loop parallelism, clocks (phasers), locality control

• No abstract metrics, data-driven execution, actors, streams

4

http://x10-lang.org/

COMP 322, Spring 2023 (M. Joyner)

Chapel

• Designed, implemented and maintained by Cray

• Partitioned Global Address Space

• Loop parallelism, task parallelism

• Locality control

• Distributed system execution

• Tasks, futures, promises

• No phasers, actors, abstract metrics, data-driven execution

5

https://chapel-lang.org/

COMP 322, Spring 2023 (M. Joyner)

Kotlin

• From the creators of IntelliJ

• Based on Java

• Multi-paradigm programming language

• Functional, object-oriented

• Lots of support for functional programing

• More compact than Java

• Fully interoperable with Java

• Support for coroutines: very similar to asyncs and future tasks

• Low-level synchronization between tasks

• Channels

• No loop parallelism, phasers, abstract metrics, streams, locality control, actors

6

https://kotlinlang.org/

COMP 322, Spring 2023 (M. Joyner)

Go

• Multi-paradigm, object-oriented, concurrent language

• Goroutines (asyncs)

• Channels

• Concurrency control structures

• Sending messages between coroutines

• No phasers, loop parallelism, futures/promises, abstract metrics, actors, locality control

7

https://go.dev/

COMP 322, Spring 2023 (M. Joyner)

Python/Ray

• Library based approach

• Aimed at data science, machine learning, data processing

• Futures and actors

• No task-level parallelism on shared memory

• No abstract metrics, phasers, loop parallelism

8

https://www.ray.io/

COMP 322, Spring 2023 (M. Joyner)

MPI

• Library framework

• Message-passing programming model

• Designed for distributed systems

• Implementations on top of several programming languages

• C/C++

• Java

• Fortran

• Julia, MATLAB, OCaml, Python, R

• Implementations for most modern supercomputers

• No tasking, futures/promises, abstract metrics, streams, phasers

9

COMP 322, Spring 2023 (M. Joyner)

Summary

• Concurrent and parallel programming is becoming pervasive

• Many languages and frameworks support some aspects

• Most of them do not support all aspects of concurrent and parallel programming

• It’s possible to build additional features on top of a few basic ones

• You have learned most of the basic concepts in COMP 322

10

