
COMP 322: Parallel and Concurrent Programming

Lecture 37: Concurrent and Parallel Languages and Frameworks

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 37 April 2023

http://comp322.rice.edu

COMP 322, Spring 2023 (M. Joyner)

What have we learned in this course?

• Functional programming for parallelism
• Lazy computation, streams
• Futures and promises
• Data-driven programming approach
• Computation graphs and their properties
• Map/Reduce programming model
• Data-parallel programming model
• Loop parallelism
• Locality control
• Handling concurrency while avoiding deadlock/livelock/starvation
• Barrier and point-to-point synchronization
• Actor programming model

2

COMP 322, Spring 2023 (M. Joyner)

Habanero

• Habanero-Java and Habanero-C
• Async/finish, futures/promises, loop parallelism, phasers, locality control, actors, isolation
• HJlib is a library implementation of these features
• Still developed and improved
• Python, Scala, Rust, X10, OpenMP, Chapel, Java, C/C++
• There’s also PCDP-Java
• Coursera equivalent of COMP 322

• No streams

3

https://habanero.cc.gatech.edu/

https://habanero.cc.gatech.edu/

COMP 322, Spring 2023 (M. Joyner)

X10

• Designed and developed at IBM
• One of the original “Next-generation” Asynchronous Partitioned Global Address Space projects
• Ancestor of Habanero Java
• Originally based on Java, later switched to Scala
• Async, finish, loop parallelism, clocks (phasers), locality control
• No abstract metrics, data-driven execution, actors, streams

4

http://x10-lang.org/

COMP 322, Spring 2023 (M. Joyner)

Chapel

• Designed, implemented and maintained by Cray
• Partitioned Global Address Space
• Loop parallelism, task parallelism
• Locality control
• Distributed system execution
• Tasks, futures, promises
• No phasers, actors, abstract metrics, data-driven execution

5

https://chapel-lang.org/

COMP 322, Spring 2023 (M. Joyner)

Kotlin

• From the creators of IntelliJ
• Based on Java
• Multi-paradigm programming language
• Functional, object-oriented

• Lots of support for functional programing
• More compact than Java
• Fully interoperable with Java
• Support for coroutines: very similar to asyncs and future tasks
• Low-level synchronization between tasks
• Channels
• No loop parallelism, phasers, abstract metrics, streams, locality control, actors

6

https://kotlinlang.org/

COMP 322, Spring 2023 (M. Joyner)

Go

• Multi-paradigm, object-oriented, concurrent language
• Goroutines (asyncs)
• Channels
• Concurrency control structures
• Sending messages between coroutines

• No phasers, loop parallelism, futures/promises, abstract metrics, actors, locality control

7

https://go.dev/

COMP 322, Spring 2023 (M. Joyner)

Python/Ray

• Library based approach
• Aimed at data science, machine learning, data processing
• Futures and actors
• No task-level parallelism on shared memory
• No abstract metrics, phasers, loop parallelism

8

https://www.ray.io/

COMP 322, Spring 2023 (M. Joyner)

MPI

• Library framework
• Message-passing programming model
• Designed for distributed systems
• Implementations on top of several programming languages
• C/C++
• Java
• Fortran
• Julia, MATLAB, OCaml, Python, R

• Implementations for most modern supercomputers
• No tasking, futures/promises, abstract metrics, streams, phasers

9

COMP 322, Spring 2023 (M. Joyner)

Summary

• Concurrent and parallel programming is becoming pervasive
• Many languages and frameworks support some aspects
• Most of them do not support all aspects of concurrent and parallel programming
• It’s possible to build additional features on top of a few basic ones
• You have learned most of the basic concepts in COMP 322

10

