
COMP 322: Parallel and Concurrent Programming

Lecture 37: Concurrent and Parallel Languages and Frameworks

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 37 April 2024

http://comp322.rice.edu

COMP 322, Spring 2024 (M. Joyner)

Acknowledgements
• “Principles of Parallel Programming”, Calvin Lin & Lawrence Snyder

—Includes resources available at http://www.pearsonhighered.com/educator/academic/product/
0,3110,0321487907,00.html

• “Parallel Architectures”, Calvin Lin
—Lectures 5 & 6, CS380P, Spring 2009, UT Austin
—http://www.cs.utexas.edu/users/lin/cs380p/schedule.html

• Slides accompanying Chapter 6 of “Introduction to Parallel Computing”, 2nd Edition, Ananth Grama,
Anshul Gupta, George Karypis, and Vipin Kumar, Addison-Wesley, 2003
—http://www-users.cs.umn.edu/~karypis/parbook/Lectures/AG/chap6_slides.pdf

• MPI slides from “High Performance Computing: Models, Methods and Means”, Thomas Sterling, CSC
7600, Spring 2009, LSU
—http://www.cct.lsu.edu/csc7600/coursemat/index.html

• mpiJava home page: http://www.hpjava.org/mpiJava.html
• MPI lectures given at Rice HPC Summer Institute 2009, Tim Warburton, May 2009

2

http://www.pearsonhighered.com/educator/academic/product/0,3110,0321487907,00.html
http://www.pearsonhighered.com/educator/academic/product/0,3110,0321487907,00.html
http://www-users.cs.umn.edu/~karypis/parbook/Lectures/AG/chap6_slides.pdf
http://www.cct.lsu.edu/csc7600/coursemat/index.html
http://www.hpjava.org/mpiJava.html

COMP 322, Spring 2024 (M. Joyner)

What have we learned in this course?

• Functional programming for parallelism
• Lazy computation, streams
• Futures and promises
• Data-driven programming approach
• Computation graphs and their properties
• Map/Reduce programming model
• Data-parallel programming model
• Loop parallelism
• Locality control
• Handling concurrency while avoiding deadlock/livelock/starvation
• Barrier and point-to-point synchronization
• Actor programming model

3

COMP 322, Spring 2024 (M. Joyner)

Habanero

• Habanero-Java and Habanero-C
• Async/finish, futures/promises, loop parallelism, phasers, locality control, actors, isolation
• HJlib is a library implementation of these features
• Still developed and improved
• Python, Kotlin, Go, X10, MPI, Chapel, Java, C/C++
• There’s also PCDP-Java
• Coursera equivalent of COMP 322

• No streams

4

https://habanero.cc.gatech.edu/

https://habanero.cc.gatech.edu/

COMP 322, Spring 2024 (M. Joyner)

X10

• Designed and developed at IBM
• One of the original “Next-generation” Asynchronous Partitioned Global Address Space projects
• Ancestor of Habanero Java
• Async, finish, loop parallelism, clocks (phasers), locality control
• No abstract metrics, data-driven execution, actors, streams

5

http://x10-lang.org/

COMP 322, Spring 2024 (M. Joyner)

Chapel

• Designed, implemented and maintained by Cray
• Partitioned Global Address Space
• Loop parallelism, task parallelism
• Locality control
• Distributed system execution
• Tasks, futures, promises
• No phasers, actors, abstract metrics, data-driven execution

6

https://chapel-lang.org/

COMP 322, Spring 2024 (M. Joyner)

Kotlin

• From the creators of IntelliJ
• Based on Java
• Multi-paradigm programming language
• Functional, object-oriented

• Lots of support for functional programing
• More compact than Java
• Fully interoperable with Java
• Support for coroutines: very similar to asyncs and future tasks
• Low-level synchronization between tasks
• Channels
• No loop parallelism, phasers, abstract metrics, streams, locality control, actors

7

https://kotlinlang.org/

COMP 322, Spring 2024 (M. Joyner)

Go

• Multi-paradigm, object-oriented, concurrent language
• Goroutines (asyncs)
• Channels
• Concurrency control structures
• Sending messages between coroutines

• No phasers, loop parallelism, futures/promises, abstract metrics, actors, locality control

8

https://go.dev/

COMP 322, Spring 2024 (M. Joyner)

Python/Ray

• Library based approach
• Aimed at data science, machine learning, data processing
• Futures and actors
• No task-level parallelism on shared memory
• No abstract metrics, phasers, loop parallelism

9

https://www.ray.io/

COMP 322, Spring 2024 (M. Joyner)

MPI

• Library framework
• Message-passing programming model
• Designed for distributed systems
• Implementations on top of several programming languages
• C/C++
• Java
• Fortran
• Julia, MATLAB, OCaml, Python, R

• Implementations for most modern supercomputers
• No tasking, futures/promises, abstract metrics, streams, phasers

10

COMP 322, Spring 2024 (M. Joyner)

Organization of a Shared-Memory Multicore Symmetric
Multiprocessor (SMP)

Memory hierarchy for a single Intel Xeon (Nehalem) Quad-core processor chip

11

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core A

L3 unified cache
(shared by all cores)

Main memory

Regs

L1
d-cache

Core B

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core C

Regs

L1
d-cache

Core D

L1
i-cache

Cores communicate
by reading and writing
data in a “shared memory”

COMP 322, Spring 2024 (M. Joyner)

Organization of a Distributed-Memory Multiprocessor
Figure (a)
• Host node (Pc) connected to a cluster of processor nodes (P0 … Pm)
• Processors P0 … Pm communicate via an interconnection network which could be standard TCP/IP

(e.g., for Map-Reduce) or specialized for high performance communication (e.g., for scientific
computing)

Figure (b)
• Each processor node consists of a processor, memory, and a Network Interface Card (NIC) connected

to a router node (R) in the interconnect

12

Processors communicate by sending messages via an interconnect

COMP 322, Spring 2024 (M. Joyner)

Using Single Program Multiple Data model with a Local View

•Processors must communicate via messages for non-local data accesses
• Similar to communication constraint for actors

13

COMP 322, Spring 2024 (M. Joyner)

The Minimal Set of MPI Routines
•MPI.Init(args)

—initialize MPI in each process
•MPI.Finalize()

—terminate MPI
•MPI.COMM_WORLD.Size()

—number of processes in COMM_WORLD communicator
•MPI.COMM_WORLD.Rank()

—rank of this process in COMM_WORLD communicator
•Note:

— COMM_WORLD is the default communicator that includes all N processes, and numbers them with
ranks from 0 to N-1

14

COMP 322, Spring 2024 (M. Joyner)

Our First MPI Program (mpiJava)

1. import mpi.*;
2. class Hello {
3. static public void main(String[] args) {
4. // Init() be called before other MPI calls
5. MPI.Init(args);
6. int npes = MPI.COMM_WORLD.Size()
7. int myrank = MPI.COMM_WORLD.Rank() ;
8. System.out.println(”My process number is ” + myrank);
9. MPI.Finalize(); // Shutdown and clean-up
10. }
11.}

15

main() is enclosed in an
implicit “forall” --- each
process runs a separate
instance of main() with
“index variable” = myrank

COMP 322, Spring 2024 (M. Joyner)

Adding Send and Recv to the Minimal Set of MPI Routines
•MPI.Init(args)

—initialize MPI in each process
•MPI.Finalize()

—terminate MPI
•MPI.COMM_WORLD.Size()

—number of processes in COMM_WORLD communicator
•MPI.COMM_WORLD.Rank()

—rank of this process in COMM_WORLD communicator
•MPI.COMM_WORLD.Send()

—send message using COMM_WORLD communicator
•MPI.COMM_WORLD.Recv()

—receive message using COMM_WORLD communicator

16

Point-
to-
point
communication

COMP 322, Spring 2024 (M. Joyner)

MPI Blocking Point to Point Communication: Basic Idea
•A very simple communication between two processes is:

—process zero sends ten doubles to process one

• In MPI this is a little more complicated than you might expect

•Process zero has to tell MPI:
—to send a message to process one
—that the message contains ten entries
—the entries of the message are of type double
—the message has to be tagged with a label (integer number)

•Process one has to tell MPI:
—to receive a message from process zero
—that the message contains ten entries
—the entries of the message are of type double
—the label that process zero attached to the message

17

COMP 322, Spring 2024 (M. Joyner)

mpiJava Send and Receive
• Send and Recv methods in Comm object:
 void Send(Object buf, int offset, int count,
 Datatype type, int dest, int tag);
 Status Recv(Object buf, int offset, int count,
 Datatype type, int src, int tag);

• The arguments buf, offset, count, type describe the data buffer to be sent and received.

• Both Send() and Recv() are blocking operations ==> potential for deadlock!
— Send() waits for a matching Recv() from its dest rank with matching type and tag
— Recv() waits for a matching Send() from its src rank with matching type and tag
— Analogous to a phaser-specific next operation between two tasks registered in SIG_WAIT mode
— The Recv() method also returns a Status value, discussed later.

18

COMP 322, Spring 2024 (M. Joyner)

Example of Send and Recv
1.import mpi.*;
2.class myProg {
3. public static void main(String[] args) {
4. int tag0 = 0; int tag1 = 1;
5. MPI.Init(args); // Start MPI computation
6. if (MPI.COMM_WORLD.rank() == 0) { // rank 0 = sender
7. int loop[] = new int[1]; loop[0] = 3;
8. MPI.COMM_WORLD.Send("Hello World!", 0, 12, MPI.CHAR, 1, tag0);
9. MPI.COMM_WORLD.Send(loop, 0, 1, MPI.INT, 1, tag1);
10. } else { // rank 1 = receiver
11. int loop[] = new int[1]; char msg[] = new char[12];
12. MPI.COMM_WORLD.Recv(msg, 0, 12, MPI.CHAR, 0, tag0);
13. MPI.COMM_WORLD.Recv(loop, 0, 1, MPI.INT, 0, tag1);
14. for (int i = 0; i < loop[0]; i++)
15. System.out.println(msg);
16. }
17. MPI.Finalize(); // Finish MPI computation
18. }
19.}

Send() and Recv() calls are blocking operations

19

COMP 322, Spring 2024 (M. Joyner)

Summary

• Concurrent and parallel programming is becoming pervasive
• Many languages and frameworks support some aspects
• Most of them do not support all aspects of concurrent and parallel programming
• It’s possible to build additional features on top of a few basic ones
• You have learned most of the basic concepts in COMP 322

20

