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What have we learned in this course?

• Functional programming for parallelism 
• Lazy computation, streams 
• Futures and promises 
• Data-driven programming approach 
• Computation graphs and their properties 
• Map/Reduce programming model 
• Data-parallel programming model 
• Loop parallelism 
• Locality control 
• Handling concurrency while avoiding deadlock/livelock/starvation 
• Barrier and point-to-point synchronization 
• Actor programming model
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Habanero

• Habanero-Java and Habanero-C 
• Async/finish, futures/promises, loop parallelism, phasers, locality control, actors, isolation 
• HJlib is a library implementation of these features 
• Still developed and improved 
• Python, Kotlin, Go, X10, MPI, Chapel, Java, C/C++ 
• There’s also PCDP-Java 
• Coursera equivalent of COMP 322 

• No streams
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X10

• Designed and developed at IBM 
• One of the original “Next-generation” Asynchronous Partitioned Global Address Space projects 
• Ancestor of Habanero Java 
• Async, finish, loop parallelism, clocks (phasers), locality control 
• No abstract metrics, data-driven execution, actors, streams
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Chapel

• Designed, implemented and maintained by Cray 
• Partitioned Global Address Space 
• Loop parallelism, task parallelism 
• Locality control 
• Distributed system execution 
• Tasks, futures, promises 
• No phasers, actors, abstract metrics, data-driven execution
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Kotlin

• From the creators of IntelliJ 
• Based on Java 
• Multi-paradigm programming language 
• Functional, object-oriented 

• Lots of support for functional programing 
• More compact than Java 
• Fully interoperable with Java 
• Support for coroutines: very similar to asyncs and future tasks 
• Low-level synchronization between tasks 
• Channels 
• No loop parallelism, phasers, abstract metrics, streams, locality control, actors
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Go

• Multi-paradigm, object-oriented, concurrent language 
• Goroutines (asyncs) 
• Channels 
• Concurrency control structures 
• Sending messages between coroutines 

• No phasers, loop parallelism, futures/promises, abstract metrics, actors, locality control
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Python/Ray

• Library based approach 
• Aimed at data science, machine learning, data processing 
• Futures and actors 
• No task-level parallelism on shared memory 
• No abstract metrics, phasers, loop parallelism
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MPI

• Library framework 
• Message-passing programming model 
• Designed for distributed systems 
• Implementations on top of several programming languages 
• C/C++ 
• Java 
• Fortran 
• Julia, MATLAB, OCaml, Python, R 

• Implementations for most modern supercomputers 
• No tasking, futures/promises, abstract metrics, streams, phasers
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Organization of a Shared-Memory Multicore Symmetric 
Multiprocessor (SMP)

Memory hierarchy for a single Intel Xeon (Nehalem) Quad-core processor chip
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Organization of a Distributed-Memory Multiprocessor
Figure (a) 
• Host node (Pc) connected to a cluster of processor nodes (P0 … Pm) 
• Processors P0 … Pm communicate via an interconnection network which could be standard TCP/IP 

(e.g., for Map-Reduce) or specialized for high performance communication (e.g., for scientific 
computing) 

Figure (b) 
• Each processor node consists of a processor, memory, and a Network Interface Card (NIC) connected 

to a router node (R) in the interconnect           
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Processors communicate by sending messages via an interconnect
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Using Single Program Multiple Data model with a Local View

•Processors must communicate via messages for non-local data accesses 
•  Similar to communication constraint for actors
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The Minimal Set of MPI Routines
•MPI.Init(args)

—initialize MPI in each process 
•MPI.Finalize()

—terminate MPI 
•MPI.COMM_WORLD.Size()

—number of processes in COMM_WORLD communicator 
•MPI.COMM_WORLD.Rank()

—rank of this process in COMM_WORLD communicator 
•Note: 

— COMM_WORLD is the default communicator that includes all N processes, and numbers them with 
ranks from 0 to N-1
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Our First MPI Program (mpiJava)

1. import mpi.*; 
2. class Hello { 
3.     static public void main(String[] args) { 
4.        // Init() be called before other MPI calls 
5.        MPI.Init(args);  
6.        int npes = MPI.COMM_WORLD.Size()  
7.        int myrank = MPI.COMM_WORLD.Rank() ; 
8.        System.out.println(”My process number is ” + myrank); 
9.        MPI.Finalize(); // Shutdown and clean-up 
10.    } 
11.}
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main() is enclosed in an 
implicit “forall” --- each 
process runs a separate 
instance of main() with 
“index variable” = myrank
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Adding Send and Recv to the Minimal Set of MPI Routines
•MPI.Init(args)

—initialize MPI in each process 
•MPI.Finalize()

—terminate MPI 
•MPI.COMM_WORLD.Size()

—number of processes in COMM_WORLD communicator 
•MPI.COMM_WORLD.Rank()

—rank of this process in COMM_WORLD communicator 
•MPI.COMM_WORLD.Send()

—send message using COMM_WORLD communicator 
•MPI.COMM_WORLD.Recv()

—receive message using COMM_WORLD communicator
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MPI Blocking Point to Point Communication: Basic Idea
•A very simple communication between two processes is: 

—process zero sends ten doubles to process one 

• In MPI this is a little more complicated than you might expect  

•Process zero has to tell MPI: 
—to send a message to process one 
—that the message contains ten entries 
—the entries of the message are of type double 
—the message has to be tagged with a label (integer number) 

•Process one has to tell MPI: 
—to receive a message from process zero 
—that the message contains ten entries 
—the entries of the message are of type double  
—the label that process zero attached to the message
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mpiJava Send and Receive
• Send and Recv methods in Comm object: 
   void Send(Object buf, int offset, int count, 
             Datatype type, int dest, int tag);
   Status Recv(Object buf, int offset, int count, 
               Datatype type, int src, int tag);

• The arguments buf, offset, count, type describe the data buffer to be sent and received.  

• Both Send() and Recv() are blocking operations ==> potential for deadlock! 
— Send() waits for a matching Recv() from its dest rank with matching type and tag 
— Recv() waits for a matching Send() from its src rank with matching type and tag 
— Analogous to a phaser-specific next operation between two tasks registered in SIG_WAIT mode 
— The Recv() method also returns a Status value, discussed later.

18



COMP 322, Spring 2024 (M. Joyner)

Example of Send and Recv
1.import mpi.*;
2.class myProg {
3.  public static void main( String[] args ) {
4.    int tag0 = 0; int tag1 = 1;
5.    MPI.Init( args );       // Start MPI computation
6.    if ( MPI.COMM_WORLD.rank() == 0 ) { // rank 0 = sender
7.      int loop[] = new int[1]; loop[0] = 3;
8.      MPI.COMM_WORLD.Send( "Hello World!", 0, 12, MPI.CHAR, 1, tag0 );
9.      MPI.COMM_WORLD.Send( loop, 0, 1, MPI.INT, 1, tag1 );
10.    } else {                        // rank 1 = receiver
11.      int loop[] = new int[1]; char msg[] = new char[12];
12.      MPI.COMM_WORLD.Recv( msg, 0, 12, MPI.CHAR, 0, tag0 );
13.      MPI.COMM_WORLD.Recv( loop, 0, 1, MPI.INT, 0, tag1 );
14.      for ( int i = 0; i < loop[0]; i++ ) 
15.        System.out.println( msg );
16.    }
17.    MPI.Finalize( );       // Finish MPI computation
18.  }
19.}

Send() and Recv() calls are blocking operations
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Summary

• Concurrent and parallel programming is becoming pervasive 
• Many languages and frameworks support some aspects 
• Most of them do not support all aspects of concurrent and parallel programming 
• It’s possible to build additional features on top of a few basic ones 
• You have learned most of the basic concepts in COMP 322
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