
COMP 322: Parallel and Concurrent Programming

Lecture 38: Concurrent and Parallel Languages and Frameworks

Zoran Budimlić and Mack Joyner
{zoran, mjoyner}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 38 18 April 2022

http://comp322.rice.edu

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

What have we learned in this course?

• Functional programming for parallelism
• Lazy computation, streams
• Futures and promises
• Data-driven programming approach
• Computation graphs and their properties
• Map/Reduce programming model
• Data-parallel programming model
• Loop parallelism
• Locality control
• Handling concurrency while avoiding deadlock/livelock/starvation
• Barrier and point-to-point synchronization
• Actor programming model

2

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Habanero

• Habanero-Java and Habanero-C
• Async/finish, futures/promises, loop parallelism, phasers, locality control, actors, isolation
• HJlib is a library implementation of these features
• Still developed and improved
• Python, Scala, Rust, X10, OpenMP, Chapel, Java, C/C++
• There’s also PCDP-Java
• Coursera equivalent of COMP 322

• No streams

3

https://habanero.cc.gatech.edu/

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

X10

• Designed and developed at IBM
• One of the original “Next-generation” Asynchronous Partitioned Global Address Space projects
• Ancestor of Habanero Java
• Originally based on Java, later switched to Scala
• Async, finish, loop parallelism, clocks (phasers), locality control
• No abstract metrics, data-driven execution, actors, streams

4

http://x10-lang.org/

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Chapel

• Designed, implemented and maintained by Cray
• Partitioned Global Address Space
• Loop parallelism, task parallelism
• Locality control
• Distributed system execution
• Tasks, futures, promises
• No phasers, actors, abstract metrics, data-driven execution

5

https://chapel-lang.org/

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Kotlin

• From the creators of IntelliJ
• Based on Java
• Multi-paradigm programming language
• Functional, object-oriented

• Lots of support for functional programing
• More compact than Java
• Fully interoperable with Java
• Support for coroutines: very similar to asyncs and future tasks
• Low-level synchronization between tasks
• Channels
• No loop parallelism, phasers, abstract metrics, streams, locality control, actors

6

https://kotlinlang.org/

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Go

• Multi-paradigm, object-oriented, concurrent language
• Goroutines (asyncs)
• Channels
• Concurrency control structures
• Sending messages between coroutines

• No phasers, loop parallelism, futures/promises, abstract metrics, actors, locality control

7

https://go.dev/

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Rust

• Multi-paradigm programming language
• Threads
• Message passing
• Shared-state safe concurrency
• Extensible concurrency with Sync (similar to Java Synchronized) and Send traits
• No phasers, loop parallelism, async/finish, futures/promises, actors, locality control

8

https://www.rust-lang.org/

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Cilk/Cilk++

• Language developed at MIT
• Commercialized and bought by Intel

• Task-parallel programming model
• Lots of advances in the work-stealing load balancing runtime techniques
• Implicit “finish” for every function
• No loop parallelism, phasers, abstract metrics, actors

9

https://cilk.mit.edu/

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Python/Ray

• Library based approach
• Aimed at data science, machine learning, data processing
• Futures and actors
• No task-level parallelism on shared memory
• No abstract metrics, phasers, loop parallelism

10

https://www.ray.io/

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Scala

• Functional, Java-based multiparadigm language
• Futures/promises
• Channels
• Data-driven programming model
• Actors
• No abstract metrics, phasers

11

https://www.scala-lang.org/

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Haskell

• Functional programming language
• Lazy computation!
• Haskell threads
• “Pure” parallelism - deterministic
• No race conditions, no deadlocks
• Concurrency between IO and computation
• Synchronizing variables
• Channels, futures, promises
• par, pseq, force functions
• No loop paralelism, abstract metrics, phasers, actors

12

https://www.haskell.org

https://www.haskell.org

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

CnC

• Data-driven programming model
• Language and library based
• Java, C, C++, Scala, Python
• Tagged computation and data
• Easy to distribute
• Easy to checkpoint/restart
• Locality control
• No phasers, loop parallelism, futures/promises, abstract metrics, actors

13

https://icnc.github.io/

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Intel Threading Building Blocks

• Library-based
• C/C++
• Work-stealing runtime
• Tasks (asyncs), loop parallelism, locality control, concurrency mechanisms
• Parallel reductions, maps, filters
• No futures/promises, abstract metrics, phasers, actors

14

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html#gs.xrs06b

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Hadoop

• Map/Reduce programming model
• Based on Java
• Distributed programming model for large scale computation
• No shared memory concurrency, async/finish, futures/promises, loop parallelism

15

https://hadoop.apache.org/

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Spark

• Map/Reduce programming model
• Python, SQL, Scala, Java, R
• Distributed programming model for large scale computation
• Highly optimized in-memory computation
• No asyncs, futures/promises, loop parallelism, shared-memory synchronization

16

https://spark.apache.org/

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

OpenSHMEM

• Library-based approach
• Partitioned Global Address Space
• Make the distributed memory “look” like a shared memory
• One-sided communication
• Collective (barrier) synchronization
• Locality control, atomic operations
• Mostly C/C++ based
• Implementations for modern supercomputers with modern networking subsystems
• No asyncs, futures/promises, abstract metrics, actors, streams

17

http://openshmem.org

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

OpenMP

• Compiler/language extensions for existing languages
• C/C++ and Fortran
• Annotation (pragma) based approach
• Widely supported by modern C++ compilers
• Designed for shared-memory systems
• Loop parallelism, tasks, locality control
• Extensions for GPU programming
• No phasers, abstract metrics, streams, futures/promises, actors

18

https://www.openmp.org/

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

MPI

• Library framework
• Message-passing programming model
• Designed for distributed systems
• Implementations on top of several programming languages
• C/C++
• Java
• Fortran
• Julia, MATLAB, OCaml, Python, R

• Implementations for most modern supercomputers
• No tasking, futures/promises, abstract metrics, streams, phasers
• “MPI + X” is still the most dominant approach, with X being OpenMP most of the time

19

https://www.open-mpi.org/

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Summary

• Concurrent and parallel programming is becoming pervasive
• Many languages and frameworks support some aspects
• Most of them do not support all aspects of concurrent and parallel programming
• It’s possible to build additional features on top of a few basic ones
• You have learned most of the basic concepts in COMP 322

20

