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0 Course Organization

The desired learning outcomes from the course fall into three major areas, that we refer to as modules:

• Module 1: Parallelism — creation and coordination of parallelism (async, finish), abstract performance
metrics (work, critical paths), Amdahl’s Law, weak vs. strong scaling, data races and determinism, data
race avoidance (immutability, futures, accumulators, dataflow), deadlock avoidance, abstract vs. real
performance (granularity, scalability), collective and point-to-point synchronization (phasers, barriers),
parallel algorithms, systolic algorithms.

• Module 2: Concurrency — critical sections, atomicity, isolation, high level data races, nondeterminism,
linearizability, liveness/progress guarantees, actors, request-response parallelism, Java Concurrency,
locks, condition variables, semaphores, memory consistency models.

• Module 3: Locality and Distribution — memory hierarchies, locality, cache affinity, data movement,
message-passing (MPI), communication overheads (bandwidth, latency), MapReduce, accelerators,
GPGPUs, CUDA, OpenCL.

Each module is further divided into units, and each unit consists of a set of topics. This document consists
of lecture notes for Module 1. The section numbering in the document follows the unit.topic format. Thus,
Section 1.2 in the document covers topic 2 in unit 1. The same numbering convention is used for the videos
hosted on edX.
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1 Task-level Parallelism

1.1 Task Creation and Termination (Async, Finish)

To introduce you to a concrete example of parallel programming, let us first consider the following sequential
algorithm for computing the sum of the elements of an array of numbers, X:

Algorithm 1: Sequential ArraySum

Input: Array of numbers, X.
Output: sum = sum of elements in array X.
sum← 0;
for i← 0 to X.length− 1 do

sum← sum+X[i];

return sum;

This algorithm is simple to understand since it sums the elements of X sequentially from left to right.
However, we could have obtained the same algebraic result by summing the elements from right to left
instead. This over-specification of the ordering of operations in sequential programs has been classically
referred to as the Von Neumann bottleneck [2]1. The left-to-right evaluation order in Algorithm 1 can be
seen in the computation graph shown in Figure 1. We will study computation graphs formally later in the
course. For now, think of each node or vertex (denoted by a circle) as an operation in the program and each
edge (denoted by an arrow) as an ordering constraint between the operations that it connects, due to the
flow of the output from the first operation to the input of the second operation. It is easy to see that the
computation graph in Figure 1 is sequential because the edges enforce a linear order among all nodes in the
graph.
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X[1] 

X[2] 

… 

0 

Figure 1: Computation graph for Algorithm 1 (Sequential ArraySum)

How can we go about converting Algorithm 1 to a parallel program? The answer depends on the parallel
programming constructs that are available for our use. We will start by learning task-parallel constructs. To
understand the concept of tasks informally, let’s use the word, task, to denote a sequential subcomputation
of a parallel program. A task can be made as small or as large as needed e.g., it can be a single statement
or can span multiple procedure calls. Program execution is assumed to start as a single “main program”
task, but tasks can create new tasks leading to a tree of tasks defined by parent-child relations arising from
task creation, in which the main program task is the root. In addition to task creation, we will also need a
construct for task termination, i.e., a construct that can enable certain computations to wait until certain
other tasks have terminated. With these goals in mind, we introduce two fundamental constructs for task
parallelism, async and finish, in the following sections2.

1These lecture notes include citation such as [2] as references for optional further reading.
2These constructs have some similarities to the “fork” and “join” constructs available in many languages, including Java’s

ForkJoin framework (which we will learn later in the course), but there are notable differences.
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//Task T0(Parent) 

finish {   //Begin finish 

  async  

    STMT1; //T1(Child) 

  //Continuation  

  STMT2;   //T0 

} //Continuation //End finish 

STMT3;     //T0 

STMT2 

async 

STMT1 

terminate 
wait 

T1 T0 

STMT3 

Figure 2: A example code schema with async and finish constructs

1.1.1 Async notation for Task Creation

The first parallel programming construct that we will learn is called async. In pseudocode notation, “async
〈stmt1〉”, causes the parent task (i.e., the task executing the async statement to create a new child task to
execute the body of the async, 〈stmt1〉, asynchronously (i.e., before, after, or in parallel) with the remainder
of the parent task. The notation, 〈stmt〉, refers to any legal program statement e.g., if-then-else, for-loop,
method call, or a block enclosed in { } braces. (The use of angle brackets in “〈stmt〉” follows a standard
notational convention to denote units of a program. They are unrelated to the < and > comparison operators
used in many programming languages.) Figure 2 illustrates this concept by showing a code schema in which
the parent task, T0, uses an async construct to create a child task T1. Thus, STMT1 in task T1 can potentially
execute in parallel with STMT2 in task T0.

async is a powerful primitive because it can be used to enable any statement to execute as a parallel task,
including for-loop iterations and method calls. Listing 1 shows some example usages of async. These
examples are illustrative of logical parallelism, since it may not be efficient to create separate tasks for all
the parallelism created in these examples. Later in the course, you will learn the impact of overheads in
determining what subset of logical parallelism can be useful for a given platform.

All algorithm and programming examples in the module handouts should be treated as “pseudocode”, since
they are written for human readability with notations that are more abstract than the actual APIs that you
will use for programming projects in COMP 322.

In Example 1 in Listing 1, the for loop sequentially increments index variable i, but all instances of the loop
body can logically execute in parallel because of the async statement. The pattern of parallelizing counted
for-loops in Example 1 occurs so commonly in practice that many parallel languages include a specialized
construct for this case, that may be given a name such as foreach, forall or forasync.

In Example 2 in Listing 1, the async is used to parallelize computations in the body of a pointer-chasing
while loop. Though the sequence of p = p.next statements is executed sequentially in the parent task, all
dynamic instances of the remainder of the loop body can logically execute in parallel with each other.

Example 3 in Listing 1 shows the computation in Example 2 rewritten as a static void recursive method.
You should first convince yourself that the computations in Examples 2 and 3 perform the same operations
by omitting the async keyword in each case, and comparing the resulting sequential versions.

Example 4 shows the use of async to execute two method calls as parallel tasks (as was done in the two-way
parallel sum algorithm).

As these examples show, a parallel program can create an unbounded number of tasks at runtime. The
parallel runtime system is responsible for scheduling these tasks on a fixed number of processors. It does
so by creating a fixed number of worker threads as shown in Figure 3, typically one worker per processor
core. Worker threads are allocated by the Operating System (OS). By creating one thread per core, we limit
the role of the OS in task scheduling to that of binding threads to cores at the start of program execution,
and let the parallel runtime system take over from that point onwards. These workers repeatedly pull work
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1 // Example 1 : execute i t e r a t i o n s o f a counted f o r loop in p a r a l l e l
2 // (we w i l l l a t e r s ee f o r a l l l oops as a shorthand f o r t h i s common case )
3 for ( int i i = 0 ; i < A. length ; i i ++) {
4 f ina l int i = i i ; // i i s a f i n a l v a r i ab l e
5 async { A[ i ] = B[ i ] + C[ i ] ; } // value o f i i s copied on entry to
6 }
7
8 // Example 2 : execute i t e r a t i o n s o f a whi l e loop in p a r a l l e l
9 pp = f i r s t ;

10 while ( pp != null ) {
11 T p = pp ; // p i s an e f f e c t i v e l y f i n a l v a r i ab l e
12 async { p . x = p . y + p . z ; } // value o f p i s cop ied on entry to async
13 pp = pp . next ;
14 }
15
16 // Example 3 : Example 2 r ewr i t t en as a r e c u r s i v e method
17 stat ic void proce s s (T p) { // parameter p i s an e f f e c t i v e l y f i n a l v a r i a b l e
18 i f ( p != null ) {
19 async { p . x = p . y + p . z ; } // value o f p i s cop ied on entry to async
20 proce s s (p . next ) ;
21 }
22 }
23
24 // Example 4 : execute method c a l l s in p a r a l l e l
25 async { l e f t s = quickSort ( l e f t ) ; }
26 async { r i g h t s = quickSort ( r i g h t ) ; }

Listing 1: Example usages of async

4 of 15



COMP 322
Spring 2015

COMP 322: Fundamentals of Parallel Programming

Module 1: Parallelism

w1 w2 w3 w4 

push 
work 

pull 
work 

Logical Work Queue 
(async’s & continuations) 

Workers 

Local variables are 
private to each task 

Static & instance fields are shared among tasks 

Figure 3: Scheduling an parallel program on a fixed number of workers. (Figure adapted from [11].)

1 // Rule 1 : a ch i l d async may read the value o f any outer f i n a l l o c a l var
2 f ina l int i 1 = 1 ;
3 async { . . . = i 1 ; /∗ i 1=1 ∗/ }
4
5 // Rule 2 : a ch i l d async may a l s o read any ” e f f e c t i v e l y f i n a l ” outer l o c a l var
6 int i 2 = 2 ; // i 2=2 i s copied on entry in to the async l i k e a method param
7 async { . . . = i 2 ; /∗ i 2=2∗/}
8 // i 2 cannot be modi f i ed again , i f i t i s ” e f f e c t i v e l y f i n a l ”
9

10 // Rule 3 : a ch i l d async i s not permitted to modify an outer l o c a l var
11 int i 3 ;
12 async { i 3 = . . . ; /∗ ERROR ∗/}

Listing 2: Rules for accessing local variables across async’s

from a shared work queue when they are idle, and push work on the queue when they generate more work.
The work queue entries can include async’s and continuations. An async is the creation of a new task, such
as T1 in Figure 2. A continuation3 represents a potential suspension point for a task, which (as shown in
in Figure 2) can include the point after an async creation as well as the point following the end of a finish
scope. Continuations are also referred to as task-switching points, because they are program points at which
a worker may switch execution between different tasks. A key motivation for this separation between tasks
and threads is that it would be prohibitively expensive to create a new OS-level worker thread for each async

task that is created in the program.

An important point to note in Figure 3 is that local variables are private to each task, whereas static
and instance fields are shared among tasks. This is similar to the rule for accessing local variables and
static/instance fields within and across methods or lambda expressions in Java. Listing 2 summarizes the
rules for accessing local variables across async boundaries. For convenience, as shown in Rules 1 and 2, a
child async is allowed to access a local variable declared in an outer async or method by simply capturing
the value of the local variable when the async task is created (analogous to capturing the values of local
variables in parameters at the start of a method call or in the body of a lambda expression). Note that a
child async is not permitted to modify a local variable declared in an outer scope (Rule 3). If needed, you
can work around the Rule 3 constraint by replacing the local variable by a static or instance field, since fields
can be shared among tasks.

3This use of “continuation” is related to, but different from, continuations in functional programming languages.
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1.1.2 Finish notation for Task Termination

The next parallel programming construct that we will learn as a complement to async is called finish. In
pseudocode notation, “finish 〈stmt〉” causes the parent task to execute 〈stmt〉, which includes the possible
creation of async tasks, and then wait until all async tasks created within 〈stmt〉 have completed before the
parent task can proceed to the statement following the finish. Async and finish statements may also be
arbitrarily nested.

Thus, the finish statement in Figure 2 is used by task T0 to ensure that child task T1 has completed executing
STMT1 before T0 executes STMT3. This may be necessary if STMT3 in Figure 2 used a value computed by STMT1.
If T1 created a child async task, T2 (a “grandchild” of T0), T0 will wait for both T1 and T2 to complete in
the finish scope before executing STMT3.

The waiting at the end of a finish statement is also referred to as a synchronization. The nested structure
of finish ensures that no deadlock cycle can be created between two tasks such that each is waiting on the
other due to end-finish operations. (A deadlock cycle refers to a situation where two tasks can be blocked
indefinitely because each is waiting for the other to complete some operation.) We also observe that each
dynamic instance TA of an async task has a unique dynamic Immediately Enclosing Finish (IEF) instance
F of a finish statement during program execution, where F is the innermost finish containing TA. Like
async, finish is a powerful primitive because it can be wrapped around any statement thereby supporting
modularity in parallel programming.

If you want to convert a sequential program into a parallel program, one approach is to insert async state-
ments at points where the parallelism is desired, and then insert finish statements to ensure that the parallel
version produces the same result as the sequential version. Listing 3 extends the first two code examples
from Listing 1 to show the sequential version, an incorrect parallel version with only async’s inserted, and
a correct parallel version with both async’s and finish’s inserted.

The source of errors in the incorrect parallel versions are data races, which are notoriously hard to debug.
As you will learn later in the course, a data race occurs if two parallel computations access the same shared
location in an “interfering” manner i.e., such that at least one of the accesses is a write (so called because the
effect of the accesses depends on the outcome of the “race” between them to determine which one completes
first). Data races form a class of bugs that are specific to parallel programming.

async and finish statements also jointly define what statements can potentially be executed in parallel
with each other. Consider the finish-async nesting structure shown in Figure 4. It reveals which pairs of
statements can potentially execute in parallel with each other. For example, task A2 can potentially execute
in parallel with tasks A3 and A4 since async A2 was launched before entering the finish F2, which is the
Immediately Enclosing Finish for A3 and A4. However, Part 3 of Task A0 cannot execute in parallel with
tasks A3 and A4 since it is performed after finish F2 is completed.

1.1.3 Array Sum with two-way parallelism

We can use async and finish to obtain a simple parallel program for computing an array sum as shown in
Algorithm 2. The computation graph structure for Algorithm 2 is shown in Figure 5. Note that it differs
from Figure 1 since there is no edge or sequence of edges connecting Tasks T2 and T3. This indicates that
tasks T2 and T3 can execute in parallel with each other; for example, if your computer has two processor
cores, T2 and T3 can be executed on two different processors at the same time. We will see much richer
examples of parallel programs using async, finish and other constructs during the course.

1.2 Computation Graphs

A Computation Graph (CG) is a formal structure that captures the meaning of a parallel program’s execution.
When you learned sequential programming, you were taught that a program’s execution could be understood
as a sequence of operations that occur in a well-defined total order, such as the left-to-right evaluation order
for expressions. Since operations in a parallel program do not occur in a fixed order, some other abstraction
is needed to understand the execution of parallel programs. Computation Graphs address this need by
focusing on the extensions required to model parallelism as a partial order. Specifically, a Computation
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1 // Example 1 : Sequent i a l v e r s i on
2 for ( int i = 0 ; i < A. length ; i++) A[ i ] = B[ i ] + C[ i ] ;
3 System . out . p r i n t l n (A [ 0 ] ) ;
4
5 // Example 1 : I n c o r r e c t p a r a l l e l v e r s i on
6 for ( int i i = 0 ; i < A. length ; i i ++) {
7 f ina l int i = i i ; // i i s a f i n a l v a r i ab l e
8 async { A[ i ] = B[ i ] + C[ i ] ; } // value o f i i s copied on entry to
9 }

10 System . out . p r i n t l n (A [ 0 ] ) ;
11
12 // Example 1 : Correct p a r a l l e l v e r s i on
13 f in ish {
14 for ( int i i = 0 ; i < A. length ; i i ++) {
15 f ina l int i = i i ; // i i s a f i n a l v a r i ab l e
16 async { A[ i ] = B[ i ] + C[ i ] ; } // value o f i i s copied on entry to
17 }
18 }
19 System . out . p r i n t l n (A [ 0 ] ) ;
20
21 // Example 2 : Sequent i a l v e r s i on
22 p = f i r s t ;
23 while ( p != null ) {
24 p . x = p . y + p . z ; p = p . next ;
25 }
26 System . out . p r i n t l n ( f i r s t . x ) ;
27
28 // Example 2 : I n c o r r e c t p a r a l l e l v e r s i on
29 pp = f i r s t ;
30 while ( pp != null ) {
31 T p = pp ; // p i s an e f f e c t i v e l y f i n a l v a r i ab l e
32 async { p . x = p . y + p . z ; } // value o f p i s cop ied on entry to async
33 pp = pp . next ;
34 }
35 System . out . p r i n t l n ( f i r s t . x ) ;
36
37 // Example 2 : Correct p a r a l l e l v e r s i on
38 pp = f i r s t ;
39 f in ish while ( pp != null ) {
40 T p = pp ; // p i s an e f f e c t i v e l y f i n a l v a r i ab l e
41 async { p . x = p . y + p . z ; } // value o f p i s cop ied on entry to async
42 pp = pp . next ;
43 }
44 System . out . p r i n t l n ( f i r s t . x ) ;

Listing 3: Incorrect and correct parallelization with async and finish
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1 f in ish { // F1
2 // Part 1 o f Task A0
3 async {A1 ; async A2;}
4 f in ish { // F2
5 // Part 2 o f Task A0
6 async A3 ;
7 async A4 ;
8 }
9 // Part 3 o f Task A0

10 }

Listing 4: Example usage of async and finish

Task A4 

finish 

async async 

Task A0 (Part 3) 

Task A0 (Part 2) 

finish 
Task A0 (Part 1) 

async 

Task A1 

async 

Task A2 
Task A3 

Figure 4: Finish-async nesting structure for code fragment in Listing 4

T1 

T2 

T1 

T3 

// Continuation of Task T1 

// Start of Task T1 (main program) 

Figure 5: Computation graph for code example in Algorithm 5 (Two-way Parallel ArraySum)
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Algorithm 2: Two-way Parallel ArraySum

Input: Array of numbers, X.
Output: sum = sum of elements in array X.
// Start of Task T1 (main program)

sum1← 0; sum2← 0;
// Compute sum1 (lower half) and sum2 (upper half) in parallel.

finish{
async{

// Task T2

for i← 0 to X.length/2− 1 do
sum1← sum1 +X[i];

};
async{

// Task T3

for i← X.length/2 to X.length− 1 do
sum2← sum2 +X[i];

};
};
// Task T1 waits for Tasks T2 and T3 to complete

// Continuation of Task T1

sum← sum1 + sum2;
return sum;

Graph consists of:

• A set of nodes, where each node represents a step consisting of an arbitrary sequential computation.
For programs with async and finish constructs, a task’s execution can be divided into steps by using
continuations to define the boundary points. Recall from Section 1.1.1 that a continuation point in a
task is the point after an async creation or a point following the end of a finish scope. It is acceptable
to introduce finer-grained steps in the CG if so desired i.e., to split a step into smaller steps. The
key constraint is that a step should not contain any parallelism or synchronization i.e., a continuation
point should not be internal to a step.

• A set of directed edges that represent ordering constraints among steps. For async–finish programs,
it is useful to partition the edges into three cases [11]:

1. Continue edges that capture sequencing of steps within a task — all steps within the same task
are connected by a chain of continue edges.

2. Spawn edges that connect parent tasks to child async tasks. When an async is created, a spawn
edge is inserted between the step that ends with the async in the parent task and the step that
starts the async body in the new child task.

3. Join edges that connect descendant tasks to their Immediately Enclosing Finish (IEF) operations.
When an async terminates, a join edge is inserted from the last step in the async to the step in
the ancestor task that follows the IEF operation.

Consider the example program shown in Listing 5 and its Computation Graph shown in Figure 6. There are
6 tasks in the CG, T1 to T6. This example uses finer-grained steps than needed, since some steps (e.g., v1
and v2) could have have been combined into a single step. In general, the CG grows as a program executes
and a complete CG is only available when the entire program has terminated. The three classes of edges
(continue, spawn, join) are shown in Figure 6. Even though they arise from different constructs, they all
have the same effect viz., to enforce an ordering among the steps as dictated by the program.
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In any execution of the CG on a parallel machine, a basic rule that must be obeyed is that a successor node
B of an edge (A,B) can only execute after its predecessor node A has completed. This relationship between
nodes A and B is referred to as a dependence because the execution of node B depends on the execution of
node A having completed. In general, node Y depends on node X if there is a path of directed edges from
X to Y in the CG. Therefore, dependence is a transitive relation: if B depends on A and C depends on B,
then C must depend on A. The CG can be used to determine if two nodes may execute in parallel with each
other. For example, an examination of Figure 6 shows that all of nodes v3 . . . v15 can potentially execute
in parallel with node v16 because there is no directed path in the CG from v16 to any node in v3 . . . v15 or
vice versa.

It is also important to observe that the CG in Figure 6 is acyclic i.e., it is not possible to start at a node
and trace a cycle by following directed edges that leads back to the same node. An important property of
CGs is that all CGs are directed acyclic graphs, also referred to as dags. As a result, the terms “computation
graph” and “computation dag” are often used interchangeably.

1.3 Ideal Parallelism

In addition to providing the dependence structure of a parallel program, Computation Graphs can also be
used to reason about the ideal parallelism of a parallel program as follows:

• Assume that the execution time, time(N), is known for each node N in the CG. Since N represents an
uninterrupted sequential computation, it is assumed that time(N) does not depend on how the CG is
scheduled on a parallel machine. (This is an idealized assumption because the execution time of many
operations, especially memory accesses, can depend on when and where the operations are performed
in a real computer system.)

• Define WORK(G) to be the sum of the execution times of the nodes in CG G,

WORK(G) =
∑

node N in G

time(N)

Thus, WORK(G) represents the total amount of work to be done in CG G.

• Define CPL(G) to be the length of the longest path in G, when adding up the execution times of all
nodes in the path. There may be more than one path with this same length. All such paths are referred
to as critical paths, so CPL stands for critical path length.

Consider again the CG, G, in Figure 6. For simplicity, we assume that all nodes have the same execution
time, time(N) = 1. It has a total of 23 nodes, so WORK(G) = 23. In addition the longest path consists of
17 nodes as follows, so CPL(G) = 17:

v1→ v2→ v3→ v6→ v7→ v8→ v10→ v11→ v12→ v13→ v14→ v18→ v19→ v20→ v21→ v22→ v23

Given the above definitions of WORK and CPL, we can define the ideal parallelism of Computation Graph
G as the ratio, WORK(G)/CPL(G). The ideal parallelism can be viewed as the maximum performance
improvement factor due to parallelism that can be obtained for computation graph G, even if we ideally had
an unbounded number of processors. It is important to note that ideal parallelism is independent of the
number of processors that the program executes on, and only depends on the computation graph

1.3.1 Abstract Performance Metrics

While Computation Graphs provide a useful abstraction for reasoning about performance, it is not practical
to build Computation Graphs by hand for large programs. The Habanero-Java (HJ) library used in the
course includes the following utilities to help programmers reason about the CGs for their programs:

• Insertion of calls to doWork(). The programmer can insert a call of the form perf.doWork(N) any-
where in a step to indicate execution of N application-specific abstract operations e.g., floating-point
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1 // Task T1
2 v1 ; v2 ;
3 f in ish {
4 async {
5 // Task T2
6 v3 ;
7 f in ish {
8 async { v4 ; v5 ; } // Task T3
9 v6 ;

10 async { v7 ; v8 ; } // Task T4
11 v9 ;
12 } // f i n i s h
13 v10 ; v11 ;
14 async { v12 ; v13 ; v14 ; } // Task T5
15 v15 ;
16 }
17 v16 ; v17 ;
18 } // f i n i s h
19 v18 ; v19 ;
20 f in ish {
21 async { v20 ; v21 ; v22 ; }
22 }
23 v23 ;

Listing 5: Example program

v1 v2 v16 v17 v18 v19

v3 v6 v9 v10 v11 v15 v20 v21 v22

v23

v4 v5 v7 v8 v12 v13 v14

Continue edge Spawn edge Join edge

Γ1

Γ2

Γ3 Γ4 Γ5

Γ6

Figure 6: Computation Graph G for example program in Listing 5
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operations, comparison operations, stencil operations, or any other data structure operations. Multiple
calls to perf.doWork() are permitted within the same step. They have the effect of adding to the
abstract execution time of that step. The main advantage of using abstract execution times is that the
performance metrics will be the same regardless of which physical machine the HJ program is executed
on. The main disadvantage is that the abstraction may not be representative of actual performance
on a given machine.

• Printout of abstract metrics. If an HJlib program is executed with a specified option, abstract metrics
are printed at the end of program execution that capture the total number of operations executed
(WORK) and the critical path length (CPL) of the CG generated by the program execution. The
ratio, WORK/CPL is also printed as a measure of ideal parallelism.

• Visualization of computation graph. A tool called HJ-viz is also provided that enables you to see an
image of the computation graph of a program executed with abstract performance metrics.

1.4 Multiprocessor Scheduling

Now, let us discuss the execution of CG G on an idealized parallel machine with P processors. It is idealized
because all processors are assumed to be identical, and the execution time of a node is assumed to be
independent of which processor it executes on. Consider all legal schedules of G on P processors. A legal
schedule is one that obeys the dependence constraints in the CG, such that for every edge (A,B) the scheduled
guarantees that B is only scheduled after A completes. Let tP denote the execution time of a legal schedule.
While different schedules may have different execution times, they must all satisfy the following two lower
bounds:

1. Capacity bound: tp ≥ WORK(G)/P . It is not possible for a schedule to complete in time less than
WORK(G)/P because that’s how long it would take if all the work was perfectly divided among P
processors.

2. Critical path bound: tp ≥ CPL(G). It is not possible for a schedule to complete in time less than
CPL(G) because any legal schedule must obey the chain of dependences that form a critical path.
Note that the critical path bound does not depend on P .

Putting these two lower bounds together, we can conclude that tp ≥ max(WORK(G)/P,CPL(G)). Thus,
if the observed parallel execution time tP is larger than expected, you can investigate the problem by
determining if the capacity bound or the critical path bound is limiting its performance.

It is also useful to reason about the upper bounds for tP . To do so, we have to make some assumption about
the “reasonableness” of the scheduler. For example, an unreasonable scheduler may choose to keep processors
idle for an unbounded number of time slots (perhaps motivated by locality considerations), thereby making
tP arbitrarily large. The assumption made in the following analysis is that all schedulers under consideration
are “greedy” i.e., they will never keep a processor idle when there’s a node that is available for execution.

We can now state the following properties for tP , when obtained by greedy schedulers:

• t1 = WORK(G). Any greedy scheduler executing on 1 processor will simply execute all nodes in the
CG in some order, thereby ensuring that the 1-processor execution time equals the total work in the
CG.

• t∞ = CPL(G). Any greedy scheduler executing with an unbounded (infinite) number of processors must
complete its execution with time = CPL(G), since all nodes can be scheduled as early as possible.

• tP ≤ t1/P + t∞ = WORK(G)/P + CPL(G). This is a classic result due to Graham [10]. An informal
sketch of the proof is as follows. At any given time in the schedule, we can declare the time slot
to be complete if all P processors are busy at that time and incomplete otherwise. The number of
complete time slots must add up to at most t1/P since each such time slot performs P units of work.
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Figure 7: Illustration of Amdahl’s Law (source: http://en.wikipedia.org/wiki/Amdahl’s law)

In addition, the number of incomplete time slots must add up to at most t∞ since each such time slot
must advance 1 time unit on a critical path. Putting them together results in the upper bound shown
above. Combining it with the lower bound, you can see that:

max(WORK(G)/P,CPL(G)) ≤ tP ≤WORK(G)/P + CPL(G)

It is interesting to compare the lower and upper bounds above. You can observe that they contain
the max and sum of the same two terms, WORK(G)/P and CPL(G). Since x + y ≤ 2 max(x, y), the
lower and upper bounds vary by at most a factor of 2×. Further, if one term dominates the other e.g.,
x� y, then the two bounds will be very close to each other.

1.5 Parallel Speedup and Amdahl’s Law

Given definitions for t1 and tP , the speedup for a given schedule of a computation graph on P processors
is defined as Speedup(P) = t1/tP . Speedup(P) is the factor by which the use of P processors speeds up
execution time relative to 1 processor, for a fixed input size. For ideal executions without overhead, 1 ≤
Speedup(P) ≤ P . The term linear speedup is used for a program when Speedup(P) = k × P as P varies, for
some constant k, 0 < k < 1.

We can now summarize a simple observation made by Gene Amdahl in 1967 [1]: if q ≤ 1 is the fraction
of WORK in a parallel program that must be executed sequentially, then the best speedup that can be
obtained for that program, even with an unbounded number of processors, is Speedup(P) ≤ 1/q. As in the
Computation Graph model studied earlier, this observation assumes that all processors are uniform i.e., they
all execute at the same speed.

This observation follows directly from a lower bound on parallel execution time that you are familiar with,
namely tP ≥ CPL(G), where tP is the execution time of computation graph G on P processors and CPL
is the critical path length of graph G. If fraction q of WORK(G) is sequential, it must be the case that
CPL(G) ≥ q ×WORK(G). Therefore, Speedup(P) = t1/tP must be ≤ WORK(G)/(q ×WORK(G)) = 1/q
since t1 = WORK(G) for greedy schedulers.
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The consequence of Amdahl’s Law is illustrated in Figure 7. The x-axis shows the number of processors
increasing in powers of 2 on a log scale, and the y-axis represents speedup obtained for different values of
q. Specifically, each curve represents a different value for the parallel portion, (1− q), assuming that all the
non-sequential work can be perfectly parallelized. Even when the parallel portion is as high as 95%, the
maximum speedup we can obtain is 20× since the sequential portion is 5%. The ideal case of q = 0 and a
parallel portion of 100% is not shown in the figure, but would correspond to the y = x line which would
appear to be an exponential curve since the x-axis is plotted on a log scale.

Amdahl’s Law reminds us to watch out for sequential bottlenecks both when designing parallel algorithms
and when implementing programs on real machines. While it may paint a bleak picture of the utility of
adding more processors to a parallel computing, it has also been observed that increasing the data size
for a parallel program can reduce the sequential portion [13] thereby making it profitable to utilize more
processors. The ability to increase speedup by increasing the number of processors for a fixed input size
(fixed WORK) is referred to as strong scaling, and the ability to increase speedup by increasing the input
size (increasing WORK) is referred to as weak scaling.
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