
COMP 322 Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

©2024 by Vivek Sarkar and Mack Joyner

March 3, 2024

PLEASE DO NOT DISTRIBUTE

Contents

5 Mutual Exclusion 2

5.1 Critical Sections and the “isolated” statement . 2

5.2 Object-based Isolation . 4

5.3 Parallel Spanning Tree Example . 7

5.4 Atomic Variables . 10

5.5 Serialized Computation Graph for Isolated Statements . 13

6 The Actor Model 15

6.1 Introduction to Actors . 15

6.2 Ordering of Messages . 20

6.3 Sieve of Eratosthenes . 20

6.4 Integration with Task Parallelism . 21

7 Java Concurrency 24

7.1 Java Threads . 24

7.2 Synchronized Statements and Methods in Java . 28

7.3 Java Locks . 28

7.4 Linearizability of Concurrent Objects . 28

A Java Concurrent Collections 33

A.1 java.util.concurrent.ConcurrentHashMap . 34

A.2 java.util.concurrent.ConcurrentLinkedQueue . 35

A.3 java.util.concurrent.CopyOnWriteArraySet . 35

1 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

5 Mutual Exclusion

5.1 Critical Sections and the “isolated” statement

For the programming constructs async, finish, future, get, forall, the following situation was defined
to be a data race error — when two accesses on the same shared location can potentially execute in parallel
such that at least one access is a write. However, there are many cases in practice when two tasks may
legitimately need to perform conflicting accesses to shared locations.

Consider the example shown below in Listing 1. The job of method deleteTwoNodes() in line 14 is to delete
the first two nodes in doubly-linked list L. It does so by calling L.delete() and L.next.delete() in parallel
in lines 16 and 17. Each call to delete() needs to perform the book-keeping operations in lines 6 and 7
in mutual exclusion from the other, so that there’s no chance of statement instances from the two different
calls being interleaved in any way. The term “mutual exclusion” refers to the requirement that lines 6 and
7 are are executed as a single indivisible step by each task, thereby excluding the other tasks when one task
is executing those statements.

1 class DoublyLinkedList {
2 DoublyLinkedList prev , next ;
3 . . .
4 void de l e t e () {
5 isolated { // s t a r t o f mutual ex c l u s i on reg i on (c r i t i c a l s e c t i o n)
6 i f (this . prev != null) this . prev . next = this . next ;
7 i f (this . next != null) this . next . prev = this . prev
8 } // end o f mutual ex c l u s i on r eg i on (c r i t i c a l s e c t i o n)
9 . . . // add i t i o na l work to d e l e t e node (mutual ex c l u s i on not needed)

10 }
11 . . .
12 }
13 . . .
14 stat ic void deleteTwoNodes (DoublyLinkedList L) {
15 f in ish {
16 async L . d e l e t e () ;
17 async L . next . d e l e t e () ;
18 }
19 }

Listing 1: Example of two tasks performing conflicting accesses

The predominant approach to ensure mutual exclusion proposed many years ago is to enclose a code region
such as lines 6 and 7 in a critical section [16]. The following definition of critical sections from [33] captures
the idea:

“In concurrent programming a critical section is a piece of code that accesses a shared resource
(data structure or device) that must not be concurrently accessed by more than one thread of
execution. A critical section will usually terminate in fixed time, and a thread, task or process will
have to wait a fixed time to enter it (aka bounded waiting). Some synchronization mechanism
is required at the entry and exit of the critical section to ensure exclusive use, for example a
semaphore.”

The primary mechanisms available to a Java programmer for implementing the synchronization necessary
for critical sections is the synchronized language construct, and the java.util.concurrent.locks library
package. You will learn about both mechanisms later in the course. Instead, the Habanero Java (HJ)
language offers a simpler construct, isolated, that can be used to directly implement critical sections, as
shown in lines 5–8 of Listing 1.

2 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

Specifically, the HJ construct, isolated 〈stmt1〉, guarantees that each instance of 〈stmt1〉 will be performed
in mutual exclusion with all other potentially parallel instances of isolated statements 〈stmt2〉. Thus, the
use of isolated in line 5 of Listing 1 is sufficient to ensure that the computations in the two calls to delete()

(lines 16 and 17) can safely be executed in parallel. After each task executes the isolated statement in
lines 6 and 7, it can perform the computation in line 9 in parallel with the other task. Unlike finish,
isolated does not dictate the order in which the two isolated instances should be executed; it just ensures
that they execute in mutual exclusion regardless of the order.

The body of an isolated statement may perform any sequential Java computation including method calls
and exceptions. It is illegal to execute a parallel construct (such as async, finish, get, or forall) within
an isolated statement. If an exception is throw within an isolated statement, S, it can be caught by a
handler within or outside S. If control exits S after an exception, then all updates performed by S before
throwing the exception will be observable after exiting S. isolated statements may be nested, but an inner
isolated statement is essentially a no-op since isolation is guaranteed by the outer statement.

There is a trade-off between making isolated statements too big or too small in scope. If they are too
big, then the parallelism in the program will be limited because interfering isolated statements cannot
be executed in parallel. (Remember Amdahl’s Law?) If they are too small, then they may not provide
the desired program semantics. For example, if the isolated statement in line 5 of Listing 1 is replaced
by two separate isolated statements for lines 6 and 7 of Listing 1, we would lose the invariant that lines 6
and 7 execute as an indivisible operation with respect to other tasks. It is also important to note that no
combination of finish, async, and isolated constructs can create a deadlock cycle among tasks.

5.1.1 Implementations of Isolated Statements

While it is convenient for the programmer to use isolated statements, this convenience imposes major
challenges on the implementation of isolated constructs. The discussion in the previous section highlights
this issue, especially if we consider the fact that the n1.delete() and n2.delete() calls may or may not
interfere depending on where n1 and n2 are located in the linked list.

The Habanero-Java implementation available for COMP 322 takes a simple single-lock approach to im-
plementing isolated statements. You will learn more about locks later in the class. The idea behind a
single-lock approach is to treat each entry of an isolated statement as an acquire() operation on the lock,
and each exit of an isolated statement as a release() operation on the lock. Though correct, this approach
essentially implements isolated statements as critical sections.

An alternate approach for implementing isolated statements being explored by the research community
is Transactional Memory (TM) [27]. In Software Transactional Memory (STM), a combination of compiler
and runtime techniques is used to optimistically execute transactions (instances of isolated statements)
in parallel while checking for possible interference. If an interference is detected, one of the transactions is
“rolled back” and restarted. Given the large amount of book-keeping necessary for logging read and write
operations to check for interference, it is widely believed that software-only approaches to TM incur too much
overhead to be useful in practice. Instead, there have been multiple proposals for Hardware Transactional
Memory (HTM) support to assist with this book-keeping. As yet, no computer with HTM support is widely
available, but a few hardware prototypes have begun to show promise in this direction e.g., [14].

When comparing implementations of isolated statements, the three cases to consider in practice can be
qualitatively described as follows:

1. Low contention: In this case, isolated statements are executed infrequently, and a single-lock approach
as in HJ is often the best solution. Other solutions, such as TM, object-based isolation (Section 5.2),
and atomic variables (Section 5.4.1), incur additional overhead compared to the single-lock approach
because of their book-keeping and checks necessary but there is no visible benefit from that overhead
because contention is low.

2. Moderate contention: In this case, the serialization of all isolated statements in a single-lock approach
limits the performance of the parallel program due to Amdahl’s Law, but a finer-grained approach

3 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

that only serializes interfering isolated statements results in good scalability. This is the case that
motivates the use of approaches such as TM, object-based isolation, and atomic variables, since the
the benefit that they offer from reduced serialization outweighs the extra overhead that they incur.

3. High contention: In this case, there are phases in the program when interfering isolated statements
on a single object (often referred to as a “hot spot” object) dominate the program execution time.
In such situations, approaches such as TM and atomic variables are of little help since they cannot
eliminate the interference inherent in accessing a single object. The best approach in such cases is to
find an alternative approach to isolated e.g., to use a parallel Array Sum algorithm instead of an
isolated statement to compute the sum of values generated by different tasks.

5.2 Object-based Isolation

In this section, we introduce the basic functionality of object-based isolation [26]. As mentioned earlier, the
focus of object-based isolation is on mutual exclusion rather than strong atomicity i.e., mutual exclusion is
only guaranteed between instances of isolated statements, unlike strong atomicity where a mutual exclusion
guarantees may also exist between atomic and non-atomic statements. Two given isolated statements
execute in mutual exclusion if the intersection of their object list is non-empty. Further, object-based
isolated statements can be combined with global isolated statements that enforce mutual exclusion on
all objects.

We first review the existing global isolated statement in HJ [20]. The HJ construct, isolated 〈stmt1〉,
guarantees that each instance of 〈stmt1〉 will be performed in mutual exclusion with all other potentially
parallel interfering instances of isolated statements 〈stmt2〉. Two instances of isolated statements, 〈stmt1〉
and 〈stmt2〉, are said to interfere with each other if both access the same shared location, such that at least
one of the accesses is a write.

The current HJ implementation takes a simple single-lock approach to implementing isolated statements,
by treating each entry of an isolated statement as an acquire() operation on the lock, and each exit of an
isolated statement as a release() operation on the lock. Though correct, this approach essentially imple-
ments isolated statements as critical sections, thereby serializing interfering and non-interfering isolated

statement instances. We refer to this approach as global mutual exclusion.

The motivation for object-based isolation is that there are many cases when the programmer knows the set
of objects that will be accessed in the body of the isolated statement. In that case, they can use a statement
of the form, isolated(obj0, obj1, . . .) 〈stmt1〉, to specify the set of objects involved. (The order of objects is
not significant.) We refer to this approach as partial mutual exclusion. In this case, two isolated statements
are only guaranteed to execute in mutual execution if they have a non-empty intersection in their object
sets. For convenience, the standard isolated statement in HJ is assumed to be equivalent to isolated(*)

i.e., an object-based isolated statement on the universal set of objects.

Figure 1 contains an example that uses global mutual exclusion to implement the insert function in the
SortList benchmark. Lines 14 to 21 contain the critical section that performs node insertion and executes
in mutual exclusion with any other critical sections that operate on objects prev and curr.

Figure 2 shows how the example presented in Figure 1 can be rewritten to use object-based isolated

statements instead. In this case, the programmer explicitly identifies objects prev and curr as being involved
in the mutual exclusion. As discussed in Section 5.1.1, lock-based implementations of object-based isolation
rely on an ability to order the objects. This ordering is in turn used to guarantee an absence of deadlock in
the implementation of object-based isolation.

As mentioned earlier, imposing a total order on the isolated objects is the key mechanism to avoid deadlocks.
This can be done easily for objects in a single isolated list, but nested isolated constructs can pose a challenge.
A sufficient condition for deadlock avoidance with nested isolation is to prohibit an inner isolated statement
from including an object that was not already acquired by an outer isolated statement. (Note that this
condition permits a task to re-acquire the same object, as is done with reentrant locks.) Figure 3 contains
an example to illustrate this rule.

4 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

pub l i c boolean i n s e r t (f i n a l i n t v) {
while (t rue) {

INode curr , prev = null ;
for (curr = f i r s t ; cur r != null ;

cur r = curr . getNext ()) {
f i n a l i n t va l = curr . getValue () ;
// v a l r eady e x i s t s

i f (va l == v) return f a l s e ;
else i f (va l > v) break ;
prev = curr ;

}

boolean set = f a l s e ;
i s o l a t e d {

i f (v a l i d a t e (prev , curr)) {
f i n a l INode neo = new INode () ;
neo . setValue (v) ;
l i n k (prev , neo , curr) ;
set = true ;

}
}
i f (set) return t rue ;

}
}

Figure 1: SortList Insert Operation with Global Isolation

5 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

pub l i c boolean i n s e r t (f i n a l i n t v) {
while (t rue) {

INode curr , prev = null ;
for (curr = f i r s t ; cur r != null ;

cur r = curr . getNext ()) {
f i n a l i n t va l = curr . getValue () ;
i f (va l == v) return f a l s e ; // v a l r eady e x i s t s
else i f (va l > v) break ;
prev = curr ;

}

boolean set = f a l s e ;
i f (prev != null && curr != null) {

i s o l a t e d (prev , curr) {
i f (v a l i d a t e (prev , curr)) {

f i n a l INode neo = new INode () ;
neo . setValue (v) ;
l i n k (prev , neo , curr) ;
set = true ;

}
}

}
}

}

Figure 2: SortList Insert Operation with Partial Mutual Exclusion

i s o l a t e d (obj1 , obj2) {
i s o l a t e d (obj3) {

S ;
}

}
(a)

i s o l a t e d {
i s o l a t e d (obj1 , obj2) {

S ;
}

}
(b)

Figure 3: Simple cases for nested isolation.

6 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

In Figure 3 (a), if obj3 is neither an alias of obj1 nor of obj2, then the statement S should not be permitted
to execute and a runtime exception is thrown at that point. This is because the inner isolated region tries
to acquire a new object that was not included in the outer isolated region, thereby opening the possibility
of a deadlock. Figure 3 (b) shows a legal example for nested isolation. The outer isolated region is a global
mutual exclusion construct (i.e. it acquires all objects), which makes it is legal to acquire any object in the
inner isolated region. To ensure the correctness of nested isolation, the implementation relies on runtime
checking as compile-time checking is undecidable in general.

Finally, a null object reference in list for an object-based isolated statement is essentially no-op (unlike
the Java synchronized statement, which throws a NullPointerException in that case). Consider the following
example:

isolated (obj1, obj2) S;

If obj1 is null, then an implementation of the isolated statement only needs to acquire obj2, thereby
making the previous statement is equivalent to the following:

isolated (obj2) S;

If both obj1 and obj2 are null, then the isolated statement degenerates to a no-op and no isolation is
imposed on S.

5.3 Parallel Spanning Tree Example

In this section, we discuss a more complicated use of isolated statements in a program written to find a
spanning tree of an undirected graph. An undirected graph G = (V,E) consists of a finite set of vertices, V ,
and a set of unordered edges, E. An edge, {u, v} connects vertices u 6= v, but the order is not significant.
This is unlike directed graphs, such as a computation graph, where the direction of the edge matters. A
common representation for undirected graphs is the adjacency list. For each vertex u in the graph, an array
neighbors can be used to store the set of vertices v 6= u such that there is an edge connecting vertices u

and v. Figure 4 contains a simple example of an undirected graph.

A path from vertex a to vertex b in graph G = (V,E) is a sequence 〈v0, v1, v2, . . . , vk〉 of vertices where v0 = a,
vk = b, and {vi, vi+1} ∈ E for i = 0, 1, . . . , k−1. A graph is connected if each pair of vertices is connected by
at least one path. A cycle (or circuit) is a path that starts and ends with the same vertex. A tree is a special
kind of undirected graph that is connected and contains no cycles. A tree always contains |V | − 1 edges.
A rooted tree has a designated vertex that is called the root. A rooted tree can be represented compactly
by a parent field in each non-root vertex such that there is a tree edge {u, v} if and only if u.parent = v
or v.parent = u. A spanning tree of a connected undirected graph G is a tree containing all the vertices of
G, and a subset of G’s edges. A graph may have multiple spanning trees. Figure 5 shows three possible
spanning trees for the graph in Figure 4.

Spanning trees have multiple applications in areas as diverse as telephone networks and transportation, since
a spanning tree contains the minimum number of edges (|V |−1) to ensure that the vertices in a graph remain
connected. Removing an edge from a spanning tree with cause the resulting graph to become disconnected.
If each edge e = {u, v} in the input graph is assigned a weight (e.g., based on the distance or cost of the
connection between the two vertices), then a minimum spanning tree is a spanning tree with the smallest
total cost, when adding the weights of edges in the tree. The problem of finding the minimum spanning
tree has received much attention in Computer Science. In this section, we will study the simpler problem of
finding any spanning tree of an input graph.

7 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

Figure 4: Example undirected graph (source [29])

Figure 5: Three spanning trees for undirected graph in Figure 4 (source [29])

8 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

Listing 2 shows the sketch of a Java class V that implements a sequential program to compute the spanning
tree of an undirected graph. Each vertex in the input graph is created as an instance of class V, and the its
neighbors array contains its adjacency list. The algorithm starts by setting root.parent = root in line 17.
Even though the root vertex does not have a defined parent, this convention simplifies the implementation
of the tryLabeling() method, as we will see. Line 18 invokes the recursive method, compute(), on root.

The body of method compute() is defined in lines 9 – 13. It iterates through each vertex (named child)
in the neighbors list of the current (this) vertex, and attempts to become the parent of child by calling
child.tryLabeling(). Consider an example where the this vertex is a and the child vertex is b in line 11.
Line 5 in method tryLabeling() will then check if b’s parent is null. If so, it sets b.parent to equal a and
returns true. Otherwise, the call to tryLabeling() returns false. Back in line 11, method compute()

will recursively call itself on child a if tryLabeling() returns true, thereby ensuring that compute() is
called exactly once for each vertex. When all recursive calls have completed, the output spanning tree is
represented by the parent fields.

1 class V {
2 V [] ne ighbors ; // adjacency l i s t f o r input graph
3 V parent ; // output value o f parent in spanning t r e e
4 boolean t ryLabe l ing (V n) {
5 i f (parent == null) parent=n ;
6 return parent == n ;
7 } // t ryLabe l ing
8 void compute () {
9 for (int i =0; i<ne ighbors . l ength ; i++) {

10 V ch i l d = ne ighbors [i] ;
11 i f (c h i l d . t ryLabe l ing (this))
12 ch i l d . compute () ; // escap ing async
13 }
14 } // compute
15 } // c l a s s V
16 . . .
17 root . parent = root ; // Use s e l f −cy c l e to i d e n t i f y root
18 root . compute () ;
19 . . .

Listing 2: Sequential Algorithm for computing the Spanning Tree of an undirected graph

Listing 3 shows a parallel version of the spanning tree program in Listing 2. The only changes are the
addition of isolated in line 5, the addition of async in line 12, and the addition of finish in line 18. The
addition of these keywords lead to a parallel program which computes a valid spanning tree of the graph, but
without preserving the left-to-right order when traversing neighbors in the original sequential version. This
is a nondeterministic algorithm since different executions may yield different spanning trees, all of which are
valid solutions.

1 class V {
2 V [] ne ighbors ; // adjacency l i s t f o r input graph
3 V parent ; // output value o f parent in spanning t r e e
4 boolean t ryLabe l ing (V n) {
5 isolated i f (parent == null) parent=n ;
6 return parent == n ;
7 } // t ryLabe l ing
8 void compute () {
9 for (int i =0; i<ne ighbors . l ength ; i++) {

10 V ch i l d = ne ighbors [i] ;
11 i f (c h i l d . t ryLabe l ing (this))
12 async ch i l d . compute () ; // escap ing async

9 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

13 }
14 } // compute
15 } // c l a s s V
16 . . .
17 root . parent = root ; // Use s e l f −cy c l e to i d e n t i f y root
18 f in ish root . compute () ;
19 . . .

Listing 3: Parallel Spanning Tree of an undirected graph

There are some other points worth observing in this example. Method compute() in lines 8–14 contains an
async but no finish statement. In such a case, the async in line 12 is called an escaping async, because its
parent task’s method can return before the async has completed. Instead, a finish is included in line 18
to ensure that all async’s terminate before the program proceeds to line 19. The isolated statement in
line 5 is necessary because multiple neighbors of a vertex v2 may compete to be its parent. The winning
vertex v1 is the one whose async finds v2.parent == null, in which case it sets v2.parent = v1. All other
neighbors will then fail to become the parent of v2 since v2.parent == null will no longer be true.

5.4 Atomic Variables

5.4.1 AtomicInteger and AtomicIntegerArray

The java.util.concurrent package [28, 17] (also referred to as j.u.c) was introduced over five years ago
as part of Java 5.0 to offer a standard set of library utilities for writing parallel programs in Java. You will
learn more details of the j.u.c. package later in the class, when you graduate from parallel programming in
HJ to parallel programming in pure Java. The use of many j.u.c. features by the programmer is prohibited
in HJ, since they can easily violate HJ’s properties such as deadlock freedom1.

However, there are two groups of utilities in j.u.c. that can be freely used in HJ code for performance and
convenience — atomic variables and concurrent collections [17]. This section focuses on the former, which is
embodied in the java.util.concurrent.atomic sub-package [5, 28]. Specifically, the j.u.c.atomic sub-
package provides library calls that can be used by HJ programmers as a more efficient substitute for certain
patterns of isolated statements. It does so by encapsulating a single variable in an object, and providing
certain read, write and read-modify-write operations that are guaranteed to be performed “atomically” on
the object i.e., as though they occurred in an isolated statement. The source of efficiency arises from teh
fact that many platforms offer hardware support for executing these read-modify-write operations atomically.

Thus, the basic idea behind atomic variables is to implement common access patterns occurring in isolated

statements as predefined methods that can be invoked by the programmer, with efficient implementations
that avoid the use of locks. Atomic variables provided a restricted solution to scalable implementations of
isolated. If an isolated statement matches an available atomic pattern, then it can be implemented by
using an atomic variable; otherwise, the default implementation of isolated or object-based isolation has
to be used instead.

The operations of interest for two j.u.c. atomic classes, AtomicInteger and AtomicIntegerArray, are
summarized in Table 1. Let us start with AtomicInteger. It has two constructors, AtomicInteger() (with
a default initial value value of 0) and AtomicInteger(init) (with a specified initial value). A single instance
of AtomicInteger encapsulates an object with a single integer field, val, that can only be read or written
using predefined methods, as shown in Table 1. Each such method call is guaranteed to execute in isolation
with other methods invoked on the same object. To use these classes in HJ, you will need to include the
following statement at the start of your program, import java.util.concurrent.atomic.*.

Table 1 shows equivalent HJ isolated statements for AtomicInteger methods get(), set(), getAndSet(),
addAndGet(), getAndAdd(), and compareAndSet(). While the functionality of your HJ program will remain
unchanged if you use AtomicInteger methods as in column 2 or isolated statements as in column 3, the per-

1The HJ implementation uses j.u.c. features to implement parallel constructs that you have already learned, such as async,
finish, future and phaser, but this usage is not visible to the HJ programmer.

10 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

j.u.c.atomic Class
and Constructors j.u.c.atomic Methods Equivalent HJ object-based isolated statements

AtomicInteger int j = v.get(); int j; isolated(v) j = v.val;
v.set(newVal); isolated(v) v.val = newVal;

AtomicInteger() int j = v.getAndSet(newVal); int j; isolated(v) { j = v.val; v.val = newVal; }
// init = 0 int j = v.addAndGet(delta); isolated(v) { v.val += delta; j = v.val; }

int j = v.getAndAdd(delta); isolated(v) { j = v.val; v.val += delta; }
AtomicInteger(init) boolean b = boolean b;

v.compareAndSet isolated(v)

(expect,update); if (v.val==expect) {v.val=update; b=true;}
else b = false;

AtomicIntegerArray int j = v.get(i); int j; isolated(v) j = v.arr[i];
v.set(i,newVal); isolated(v) v.arr[i] = newVal;

AtomicIntegerArray int j = v.getAndSet(i,newVal); int j; isolated(v) { j = v.arr[i]; v.arr[i] = newVal; }
(length) // init = 0 int j = v.addAndGet(i,delta); isolated(v) { v.arr[i] += delta; j = v.arr[i]; }

int j = v.getAndAdd(i,delta); isolated(v) { j = v.arr[i]; v.arr[i] += delta; }
AtomicIntegerArray boolean b = boolean b;
(arr) v.compareAndSet isolated(v)

(i,expect,update); if (v.arr[i]==expect) {v.arr[i]=update; b=true;}
else b = false;

Table 1: Methods in java.util.concurrent atomic classes AtomicInteger and AtomicIntegerArray and
their equivalent HJ object-based isolated statements. Variable v refers to a j.u.c.atomic object in column 2
and to an equivalent non-atomic object in column 3. val refers to a field of type int, and arr refers to a
field of type int[].

1) Rank computation:
rank = new ...; rank.count = 0; AtomicInteger rank = new AtomicInteger();

.

isolated(rank) r = ++rank.count; r = rank.incrementAndGet();

2) Work assignment:
rem = new ...; rem.count = n; AtomicInteger rem = new AtomicInteger(n);

.

isolated(rem) r = rem.count--; r = rem.getAndDecrement();

if (r > 0) . . . if (r > 0) . . .

3) Counting semaphore:
sem = new ...; sem.count = 0; AtomicInteger sem = new AtomicInteger();

.

isolated(sem) r = ++sem.count; r = sem.incrementAndGet();

.

isolated(sem) r = --sem.count; r = sem.decrementAndGet();

.

isolated(sem) s = sem.count; isZero = (s==0); s = sem.get(); isZero = (s==0);

4) Sum reduction:
sum = new ...; sum.val = 0; AtomicInteger sum = new AtomicInteger();

.

isolated(sum) sum.val += x; sum.addAndGet(x);

Table 2: Examples of common isolated statement idioms and their equivalent AtomicInteger implemen-
tations

11 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

formance of your program in the moderate contention case will usually be superior when using AtomicInteger

methods for the reasons discussed in Section 5.1.1. The complete list of AtomicInteger methods can
be found in [5]. The methods omitted from Table 1 include decrementAndGet(), getAndDecrement(),
incrementAndGet(), and getAndIncrement() (since they are equivalent to the add methods in Table 1
with delta=1 or delta=-1), doubleValue(), floatValue() and intValue() (since their functionality can
be obtained by simple cast operations), and weakCompareAndSet() (since it is identical to compareAndSet()

in HJ, but differs from compareAndSet() in some fine points of the Java Memory Model that are not ob-
served on current hardware). While the isolated patterns supported by the AtomicInteger methods in
Table 1 may appear to be limited, they capture idioms that occur frequently in parallel programs as shown in
Table 2. In addition, variants of the addAndGet() and getAndAdd() methods have been studied extensively
for the last 30 years [19, 18] as primitives for building scalable parallel algorithms.

Table 1 also shows constructors and methods for the AtomicIntegerArray class. The main advantage
of using an instance of AtomicIntegerArray instead of creating an array of AtomicInteger’s is that an
AtomicIntegerArray instance occupies less space since its book-keeping overhead is amortized over an
entire integer array, whereas a AtomicInteger[] array is essentially an array of objects. An element access
in AtomicInteger[] also incurs an extra indirection relative to an element access in AtomicIntegerArray.

The j.u.c.atomic sub-package also includes AtomicLong, AtomicLongArray, and AtomicBoolean classes,
with methods that are easy to understand once you know the methods available in AtomicInteger and
AtomicIntegerArray.

5.4.2 AtomicReference

It is useful to perform atomic operations on object references, in addition to atomic operations on the primi-
tive data types outlined in Section 5.4.1. Table 3 summarizes the operations available for AtomicReference
and AtomicReferenceArray classes in the j.u.c.atomic sub-package. The compareAndSet() method can
be especially useful in practice. As an example, consider the code in Listing 4 with an object-based isolated
statement used in the Parallel Spanning Tree example.

1 class V {
2 V [] ne ighbors ; // adjacency l i s t f o r input graph
3 V parent ; // output value o f parent in spanning t r e e
4 boolean t ryLabe l ing (V n) {
5 boolean re tVal ;
6 isolated (this) { i f (parent == null) parent=n ; retVal = (parent == n) ;
7 return re tVal ;
8 } // t ryLabe l ing
9 . . .

10 } // c l a s s V

Listing 4: Use of isolated in Parallel Spanning Tree example

1 class V {
2 V [] ne ighbors ; // adjacency l i s t f o r input graph
3 AtomicReference parent ; // output value o f parent in spanning t r e e
4 boolean t ryLabe l ing (V n) {
5 return parent .compareAndSet(null , n) ;
6 } // t ryLabe l ing
7 . . .
8 } // c l a s s V

Listing 5: Use of compareAndSet() as a replacement for isolated in Listing 4

The isolated statement in line 5 of Listing 4 can be replaced by a compareAndSet() method if parent
is stored as an AtomicReference, as shown above in Listing 5. There are additional j.u.c.atomic classes

12 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

j.u.c.atomic Class
and Constructors j.u.c.atomic Methods Equivalent HJ isolated statements

AtomicReference Object o = v.get(); Object o; isolated o = v.ref;
v.set(newRef); isolated v.ref = newRef;

AtomicReference() Object o = Object o;
// init = null v.getAndSet(newRef); isolated { o = v.ref; v.ref = newRef; }

boolean b = boolean b;
AtomicReference(init) v.compareAndSet isolated

(expect,update); if (v.ref==expect) {v.ref=update; b=true;}
else b = false;

AtomicReferenceArray Object o = v.get(i); Object o; isolated o = v.arr[i];
v.set(i,newRef); isolated v.arr[i] = newRef;

AtomicReferenceArray Object o = Object o;
(length) // init = null v.getAndSet(i,newRef); isolated { o = v.arr[i]; v.arr[i] = newRef; }

boolean b = boolean b;
AtomicIntegerArray v.compareAndSet isolated

(arr) (i,expect,update); if (v.arr[i]==expect) {v.arr[i]=update; b=true;}
else b = false;

Table 3: Methods in java.util.concurrent atomic classes AtomicReference and AtomicReferenceArray

and their equivalent HJ object-based isolated statements. Variable v refers to a j.u.c.atomic object in
column 2 and to an equivalent non-atomic object in column 3. ref refers to a field of type Object, and arr
refers to a field of type Object[].

available called AtomicMarkableReference and AtomicStampedReference that support atomic manipula-
tion of a reference+boolean pair or a reference+int pair respectively. Unfortunately, there is no pre-defined
method that can support atomic manipulation of multiple objects as in the isolated statement in Listing 1.

5.5 Serialized Computation Graph for Isolated Statements

How can the Computation Graph (CG) structure be extended to model isolated statements? We start by
modeling each instance of an isolated statement as a distinct step (node) in the CG. This is permissible
since the execution of an isolated statement is purely sequential with no internal continuation points.
Next, we reason about the order in which interfering isolated statements are executed. This is complicated
because the order may vary from execution to execution e.g., the isolated statement instance invoked by
the async in line 16 of Listing 1 may execute before the isolated statement in line 17 in one execution,
and vice versa in another execution.

To solve this dilemma, we introduce a family of Serialized Computation Graphs (SCG’s) that can be obtained
when executing a program for a given input. Each SCG consists of a CG with additional serialization edges.
Consider a CG being constructed on-the-fly as a parallel program executes. Each time an isolated step,
S′, is executed, we add a serialization edge from S to S′ for each isolated step, S, that has already executed.
For simplicity, we omit serialization edges when the source and destination steps belong to the same task,
since they will always be redundant.

Each SCG represents a set of executions in which all interfering isolated statements execute in the same
order. Different SCG’s are used to reason about different orders of execution of interfering isolated state-
ments. We can use SCG’s to reason about properties of parallel programs that you have already studied
with respect to a specific CG. For example, the critical path length (CPL) of the execution of a program
with isolated statements can be obtained by computing the CPL of the corresponding SCG.

Consider the computation graph in Figure 6 (ignoring the red serialization edges) and assume that nodes
v10, v11, v16 all consist of interfering isolated steps as shown in the bottom right of the figure. There
are three possible orderings for these nodes, when taking continue, spawn and join edges into account:

13 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

v16 → v10 → v11, v10 → v16 → v11 and v10 → v11 → v16. Each order leads to a different SCG, when
serialization edges are added. The red edges in Figure 6 show serialization edges added when the isolated

steps execute in the sequence, v10 → v16 → v11. These edges increase the critical path length of the SCG
from 17 nodes (without serialization edges) to 18 nodes (with serialization edges). Alternate SCG’s are also
possible with serialization edges v10 → v11 → v16 and v16 → v10 → v11 which result in a critical path
length of 17 nodes.

v1 v2 v16 v17 v18 v19

v3 v6 v9 v10 v11 v15 v20 v21 v22

v23

v4 v5 v7 v8 v12 v13 v14

Continue edge Spawn edge Join edge

!1

!2

!3 !4 !5

!6

Serialization edge v10: isolated { x ++; y = 10; }
v11: isolated { x++; y = 11; }
v16: isolated { x++; y = 16; }

Figure 6: Serialized Computation Graph with Serialization Edges

5.5.1 Data Races and the Isolated Statement

The following definition of data races studied earlier can also be directly applied to an SCG:

“Formally, a data race occurs on location L in a program execution with computation graph CG
if there exist steps S1 and S2 in CG such that:

1. S1 does not depend on S2 and S2 does not depend on S1 i.e., there is no path of dependence
edges from S1 to S2 or from S2 to S1 in CG, and

2. both S1 and S2 read or write L, and at least one of the accesses is a write.”

By this definition, there is no data race between (say) node v10 and v16 in Figure 6, since the insertion of
serialization edges ensures that there cannot be a data race between any two interfering isolated statement
instances. The absence of a data race appears reasonable for variable x in Figure 6 (since all executions
will result in x++ being performed exactly three times in isolation), but what about variable y? The final
value of y depends on the order in which the isolated statements are executed. While this appears to be
a race of some sort, it is not considered to be a data race according to the above definition. In general, data
races are considered more harmful than other forms of races in parallel programs, because the semantics of
data races depends on intricate details of the underlying memory consistency model.

As another example, consider the forall loop in Listing 6. The read and write accesses to rank.count in
line 3 result in data races between all pairs of forall iterations.

14 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

1 rank . count = 0 ; // rank ob j e c t conta in s an i n t f i e l d , count
2 f o ra l l (point [i] : [0 :m−1]) {
3 int r = rank . count++;
4 Str ingArray [i] = Hello , World from task with rank = + r ;
5 }

Listing 6: Example of a forall loop with a data race error

Earlier, you learned how finish statements can be inserted to fix data race errors. For this example, an
isolated statement needs to be used instead, as shown in line 4 of Listing 7.

1 rank . count = 0 ; // rank ob j e c t conta in s an i n t f i e l d , count
2 f o ra l l (point [i] : [0 :m−1]) {
3 int r ;
4 isolated { r = rank . count++; }
5 Str ingArray [i] = Hello , World from task with rank = + r ;
6 }

Listing 7: Using an isolated statement to fix the data race error in Listing 7

Note that the program in Listing 7 is nondeterministic because different executions with the same input can
result in different outputs (related to which iteration i gets assigned which rank r). It is informative to
review the following property studied earlier, in light of isolated constructs:

Determinism property: if a parallel program with async, finish, forall, future and get oper-
ations can never have a data race, then it must be deterministic with respect to its inputs.

This Determinism property does not hold in general for data-race-free programs that include isolated

statements, as seen in the examples in Figure 6 and in Listing 7. Thus, the distinction between deterministic
and data-race-free programs needs to be understood with more care, when isolated statements are also
under consideration.

Finally, we note that the isolated construct supports weak isolation [27]. With weak isolation, any mem-
ory accesses performed outside isolated constructs are not checked for interference with accesses within
isolated constructs. Thus, there is the possibility of the “indivisibility” associated with an isolated state-
ment being broken due to data races with non-isolated accesses, such as (say) a non-isolated x++ operation
in node v17 in Figure 6.

6 The Actor Model

Acknowledgment: the content in this section was developed in collaboration with Shams Imam.

The Actor Model (AM) promotes a no-shared mutable state and an event-driven philosophy. It was first
defined in 1973 by Carl Hewitt et al. during their research on Artificial Intelligent (AI) agents [23]. It was
designed to address the problems that arise while writing distributed applications. Further work by Henry
Baker [24], Gul Agha [12], and others added to the theoretical development of the AM. The AM is different
from task parallelism in that it is primarily an asynchronous message-based concurrency model. An actor is
the central entity in the AM that defines how computation proceeds. The key idea is to encapsulate mutable
state and use asynchronous messaging to coordinate activities among actors.

6.1 Introduction to Actors

An actor is defined as an object that has the capability to process incoming messages. Usually the actor has
a mailbox, as shown in Figure 7, to store its incoming messages. Other actors act as producers for messages

15 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

that go into the mailbox. An actor also maintains local state which is initialized during creation. Henceforth,
the actor is only allowed to update its local state using data (usually immutable) from the messages it receives
and intermediate results it computes while processing the message. The actor is restricted to process at most
one message at a time. This allows actors to avoid data races and to avoid the need for synchronization as
there is no other actor contending for access to its local data. There is no restriction on the order in which
the actor decides to process incoming messages. As an actor processes a message, it is allowed to change its
behavior that affects how it processes the subsequent messages.

Figure 7: Actors store incoming messages in a mailbox, maintain a local state which is not directly exposed
to other actors, and process at most one message at a time.

An actor has a well-defined life cycle and restrictions on the actions it performs in the different states. During
its life cycle an actor is in one of the following three states:

• new : An instance of the actor has been created; however, the actor is not yet ready to receive or
process messages.

• started : An actor moves to this state from the new state when it has been started using the start

operation. It can now receive asynchronous messages and process them one at a time. While processing
a message, the actor should continually receive any messages sent to it without blocking the sender.

• terminated : The actor moves to this state from the started state when it has been terminated and will
not process any messages in its mailbox or new messages sent to it. An actor signals termination by
using the exit operation on itself while processing some message.

Figure 8: Actors have a simple life cycle. The most interesting state is started which is where the actor is
receiving and processing messages.

An actor interacts with other actors in two ways as shown in Figure 9. Firstly, it can send and receive
messages to and from other actors. The sending and receiving of messages is done asynchronously, i.e.

16 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

the sending actor can deliver a message without waiting for the receiving actor to be ready to process the
message. An actor learns about the existence of other actors by either receiving their addresses in incoming
messages or during creation. This brings us to the second manner of actor interaction: an actor can create
new actors. This new actor can have its local state initialized with information from the parent actor. It
is important to note that the network of actors an actor knows about can grow dynamically thus allowing
formation of arbitrary connection graphs among actors and a wide range of communication and coordination
patterns between them. In summary, while processing a message an actor may perform a finite combination
of the following steps:

1. Asynchronously send a message to another actor whose address is known;

2. Create a new actor providing all the parameters required for initialization;

3. Become another actor, which specifies the replacement behavior to use while processing the subsequent
messages [31].

Figure 9: During the processing of a message, actor interactions include exchanging messages with other
actors and creating new actors.

6.1.1 Desirable Properties

The only way an actor conveys its internal state to other actors is explicitly via messages and responses
to messages. This property obtains benefits similar to encapsulation in object-oriented programming and
encourages modularity. The encapsulation of the local state also helps prevent data races because only the
actor can modify its local state. Due to the asynchronous mode of communication, the lack of restriction
on the order of processing messages sent from different actors, and the absence of synchronization via
encapsulation of local data, actors expose inherent concurrency and can work in parallel with other actors.

6.1.2 Habanero-Java Actors

Habanero-Java (HJ) actors are defined by extending the hj.lang.Actor base class. Concrete sub-classes are
required to implement the method used to process messages. This method is named process() in HJ light
actors. Actors are like other objects and can be created by a new operation on concrete classes. An actor
is activated by the start() method, after which the runtime ensures that the actor’s message processing
method is called for each message sent to the actor’s mailbox. The actor can terminate itself by calling the

17 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

exit() method while processing a message. Messages can be sent to actors from actor code or non-actor
code by invoking the actor’s send() method using a call as follows, someActor.send(aMessage). A send()

operation is non-blocking and the recipient actor processes the message asynchronously.

All async tasks created internally within an actor are registered on the finish scope that contained the
actor’s start() operation. The finish scope will block until all actors started within it terminate. This is
similar to the finish semantics while dealing with asyncs.

1
2 import hj . lang . Actor ;
3
4 public class HelloWorld {
5 public stat ic void main (f ina l St r ing [] a rgs) {
6 PrintActor ac to r = new PrintActor () ;
7 ac to r . start () ;
8 ac to r . send (”He l lo ”) ;
9 ac to r . send (”World”) ;

10 ac to r . send (Pr intActor .STOPMSG) ;
11 }
12 }
13
14 class PrintActor extends Actor<Object> {
15 stat ic f ina l Object STOPMSG = new Object () ;
16 protected void proce s s (f ina l Object msg) {
17 i f (STOPMSG. equa l s (msg)) {
18 exit () ;
19 } else {
20 System . out . p r i n t l n (msg) ;
21 }
22 }
23 }

Listing 8: HelloWorld using HJ actors

Listing 8 shows a HelloWorld example using HJ actors. We are guaranteed ordered sends, i.e. though Hello

and World will be processed asynchronously, they will be processed in that order.

1
2 import hj . lang . Actor ;
3
4 public class S impleP ipe l ine {
5 public stat ic void main (f ina l St r ing [] a rgs) {
6 // r e l y on the imp l i c i t IEF f o r HJ programs
7 Actor<Object> f i r s t S t a g e =
8 new EvenLengthFi lter (
9 new LowerCaseFi l ter (

10 new PrintStage ())) ;
11
12 f i r s t S t a g e . start () ;
13
14 f i r s t S t a g e . send (” p i p e l i n e ”) ;
15 f i r s t S t a g e . send (” F i l t e r ”) ;
16 f i r s t S t a g e . send (”example”) ;
17
18 f i r s t S t a g e . send (new StopMessage ()) ;
19 }
20 }

18 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

21
22 class StopMessage {}
23
24 class EvenLengthFi lter extends Actor<Object> {
25 private f ina l Actor<Object> nextStage ;
26 EvenLengthFi lter (f ina l Actor<Object> nextStage) {
27 this . nextStage = nextStage ;
28 }
29 public void start () {
30 super . start () ;
31 nextStage . start () ;
32 }
33 protected void proce s s (f ina l Object msg) {
34 i f (msg instanceof StopMessage) {
35 nextStage . send (msg) ;
36 exit () ;
37 } else i f (msg instanceof St r ing) {
38 St r ing msgStr = (St r ing) msg ;
39 i f (msgStr . l ength () % 2 == 0) {
40 nextStage . send (msgStr) ;
41 }
42 }
43 }
44 }
45 class LowerCaseFi l ter extends Actor<Object> {
46 private f ina l Actor<Object> nextStage ;
47 LowerCaseFi l ter (f ina l Actor<Object> nextStage) {
48 this . nextStage = nextStage ;
49 }
50 public void start () {
51 super . start () ;
52 nextStage . start () ;
53 }
54 protected void proce s s (f ina l Object msg) {
55 i f (msg instanceof StopMessage) {
56 exit () ;
57 nextStage . send (msg) ;
58 } else i f (msg instanceof St r ing) {
59 St r ing msgStr = (St r ing) msg ;
60 i f (msgStr . toLowerCase () . equa l s (msgStr)) {
61 nextStage . send (msgStr) ;
62 }
63 }
64 }
65 }
66 class PrintStage extends Actor<Object> {
67 protected void proce s s (f ina l Object msg) {
68 i f (msg instanceof StopMessage) {
69 exit () ;
70 } else i f (msg instanceof St r ing) {
71 System . out . p r i n t l n (msg) ;
72 }
73 }
74 }

Listing 9: A simple pipeline using HJ actors

19 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

Listing 9 shows an example of implementing a static pipeline using HJ actors. The pipeline is built up of
three stages:

• EvenLengthFilter : The first stage of the pipeline filters out strings which are of odd length. It forwards
strings of even length to the next stage in the pipeline.

• LowerCaseFilter : The second stage of the pipeline converts all the input strings to lowercase before
forwarding to the third (and final) stage of the pipeline.

• PrintStage: The final stage of the pipeline prints the input strings. These strings are of even length
and in lowercase due to the processing in the earlier stages of the pipeline.

6.1.3 Tips and Pitfalls

• Use an actor-first approach when designing programs that use actors i.e., think about which actors
need to be created and how they will communicate with each other. This step will also require you to
think about the communication objects used as messages.

• If possible, use immutable objects for messages, since doing so avoids data races and simplifies debug-
ging of parallel programs.

• When overriding the start() or exit() methods in actor classes, remember to make the appropriate
calls to the parent’s implementation with super.start() or super.exit(), respectively,

• The HJ actor start() method is not idempotent. Take care to ensure you do not invoke start()

on the same actor instance more than once. The exit() method on the other hand is idempotent,
invoking exit() multiple times is safe within the same call to process().

• Always remember to terminate a started actor using the exit() method. If an actor that has been
started is not terminated, the enclosing finish will wait forever (deadlock).

6.2 Ordering of Messages

Habanero actors preserve the order of messages with the same sender task and receiver actor, but messages
from different senders may be interleaved in an arbitrary order. This is similar to the message ordering
provided by ABCL [35].

6.3 Sieve of Eratosthenes

Pipelining is used for repetitive tasks where each task can be broken down into independent sub-tasks (also
called stages) which must be performed sequentially, one after the other. Each stage partially processes data
and then forwards the partially processed result to the next stage in the pipeline for further processing. This
pattern works best if the operations performed by the various stages of the pipeline are balanced, i.e. take
comparable time. If the stages in the pipeline vary widely in computational effort, the slowest stage creates
a bottleneck for the aggregate throughput.

The pipeline pattern is a natural fit with the actor model since each stage can be represented as an actor.
The single message processing rule ensures that each stage/actor processes one message at a time before
handing off to the next actor in the pipeline. The stages however need to ensure ordering of messages while
processing them. In our actor model, this ordering support is provided by default for messages from the
same actor to another actor. However, the amount of parallelism in a full pipeline is limited by the number
of stages.

One algorithm that can be solved elegantly using a dynamic pipeline is the Sieve of Eratosthenes [34]. The
algorithm incrementally builds knowledge of primes. The basic idea is to create multiple stages of the pipeline
that forward a candidate prime number to the next stage only if the stage determines the candidate is locally
prime. When the candidate reaches the end of the pipeline, the pipeline may need to be extended. Thus, this
is also an example of a dynamic pipeline where the number of stages is not necessarily known in advance. A

20 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

simple diagrammatic explanation of how the pipeline would work is shown in Figure 10. Note that to reduce
the relative overhead in a real implementation, you will need to increase the amount of work done in each
stage by having it store and process multiple prime numbers as a batch.

Figure 10: Illustration of Sieve of Eratosthenes algorithm (source: http://golang.org/doc/sieve.gif)

6.4 Integration with Task Parallelism

There is internal concurrency in an actor in that it can be processing a message, receiving messages from
other actors and sending messages to other actors at the same time. However, the requirement that the
actor must process at most one message at a time is often misunderstood to mean that the processing must
be done via sequential execution. In fact, there can be parallelism exposed even while message processing
as long as the semantics is equivalent to that of processing at most one message at a time. A unique feature
of the Habanero Actor model lies in its integration with task parallelism, so that (for example) async and
finish constructs can be used when processing a message.

6.4.1 Using finish constructs during message processing

The traditional actor model already ensures that the actor processes one message at a time. Since no
additional restrictions are placed on the message processing body, we can achieve parallelism by creating
new async-finish constructs inside the message processing body. This will mean that we will spawn off
new tasks to achieve the parallelism at the cost of blocking the original message processing task at the
new finish. Since the main message processing task only returns after all spawned tasks have completed,
the invariant that only one message is processed at a time is maintained. Figure 11 shows an example
code snippet that achieves this. Note that there is no restriction on the constructs used inside the newly
constructed finish.

6.4.2 Pause and Resume operations

Requiring all spawned asyncs inside the message processing body are captured is too strict. This restriction
can be relaxed based on the observation that the at most one message processing rule is required to ensure
there are no internal state changes of an actor being effected by two or more message processing tasks of
the same actor. We can achieve the same invariant by introducing a paused state in the actor life cycle and
adding two new operations: pause and resume. In the paused state the actor is not processing any messages
from its mailbox. The actor is simply idle as in the new state, however the actor can continue receiving
messages from other actors. The actor will resume processing its messages, at most one at a time, when
it returns to the started state. The pause operation takes the actor from a started state to a paused state

21 of 39

http://golang.org/doc/sieve.gif

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

class Para l l e l i z e dPro c e s s i n gAc t o r () extends HybridActor {
override def behavior () = {

case msg : SomeMessage =>
// prep roce s s the message
f in ish { // f i n i s h to ensure a l l spawned ta sk s complete

async {
// do some pro c e s s i ng in p a r a l l e l

}
async {

// do some more p ro c e s s i ng in p a r a l l e l
}

}
// pos tp roc e s s the message a f t e r spawned ta sk s i n s i d e f i n i s h complete

. . .
}

}

Figure 11: An actor exploiting the async-finish parallelism inside actors message processing body. The
nested finish ensures no spawned tasks escape away causing the actor to process multiple messages at a
time.

while the resume operation achieves the reverse. The actor is also allowed to terminate from the paused
state using the exit operation. Neither of these operations are blocking, they only affect the internal state
of the actor which controls when messages are processed from the mailbox.

Figure 12: Actor life cycle from Figure 8 extended with a paused state. The actor can now continually switch
between a started and paused state.

With the two new operations, we can now allow spawned tasks to escape the main message processing task.
These spawned tasks are safe to run in parallel with the next message processing task of the same actor as
long as they are not concurrently affecting the internal state of the actor. The actor can be suspended in
a paused state while these spawned tasks are executing and can be signaled to resume processing messages
once the spawned tasks determine they will no longer be modifying the internal state of the actor and hence
not violating the one message processing rule. Figure 13 shows an example where the pause and resume

operations are used to achieve parallelism inside the message processing body.

6.4.3 Stateless Actors

The http://www.gpars.org/guide/GPars project, implemented in Groovy, has a notion of stateless actors
that are allowed to process multiple messages simultaneously when they do not update internal state. As
shown in Figure 14 (with Scala syntax!), it is easy to create stateless actors in Habanero’s actor model

22 of 39

http://www.gpars.org/guide/

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

class Para l l e l i zedWithEscapingAsyncsActor () extends HybridActor {
override def behavior () = {

case msg : SomeMessage =>
// prep roce s s the message
async {

// do some pro c e s s i ng in p a r a l l e l
}
pause // to prevent the ac to r from proc e s s i ng the next message
// note that pause/resume i s not b lock ing
async {

// do some more p ro c e s s i ng in p a r a l l e l
// i t i s now s a f e f o r the ac to r to resume pro c e s s i ng other messages
resume
// some more p ro c e s s i ng

}
. . .

}
}

Figure 13: An actor exploiting parallelism via asyncs while avoiding an enclosing finish. The asyncs
escape the message processing body, but the pause and resume operations are used to control processing of
subsequent messages by the actor.

because of its integration with task parallelism. There is no need to use the pause operation for stateless
actors; the escaping async tasks can process multiple messages to the same actor in parallel.

class S ta t e l e s sAc to r () extends HybridActor {
override def behavior () = {

case msg : SomeMessage =>
async {

// proce s s the cur rent message
}
i f (enoughMessagesProcessed) {

e x i t ()
}
// return immediately to be ready to proce s s the next message

}
}

Figure 14: A simple stateless actor created using the hybrid model. The message processing body spawns a
new task to process the current message and returns immediately to process the next message. Because the
async tasks are allowed to escape, the actor may be processing multiple messages simultaneously.

23 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

7 Java Concurrency

7.1 Java Threads

Now that you have learned the fundamentals of parallel programming in the context of Habanero constructs,
it is time to remove the “training wheels” and introduce you to parallel programming in the real world starting
with Java threads. A unique aspect of Java compared to most of its predecessor mainstream programming
languages (e.g., C, C++, Pascal, FORTRAN, PL/1, COBOL) is that Java included the notion of threads
and synchronization as part of its language definition right from the start, whereas support for parallelism
in the predecessor languages is typically achieved through extra-language mechanisms such as libraries, e.g.,
POSIX threads [30], Message-Passing Interface (MPI) [32], and Map-Reduce, or pseudo-comment “pragmas”
e.g., OpenMP [15].

As we will see, Java essentially takes a library-based approach to parallelism (which in turn made it possible
to implement the Habanero-Java library on top of standard Java). The key mechanisms used to communicate
task definitions to Java Concurrency libraries were originally Runnable and Callable objects that provide
support for a limited form of closures. Runnable object are reviewed next in Section 7.1.1, and Callable
objects in Section 7.1.2. However, with the introduction of lambdas in Java 8, lambdas can capture closures
more simply in Java than runnable or callable objects.

Recall the HJ pseudocode below in Listing 10 that you learned in Lecture 1 for computing the sum of an
array using two parallel async tasks:

1 // Star t o f Task T1 (main program)
2 sum1 = 0 ; sum2 = 0 ; // Assume that sum1 & sum2 are f i e l d s (not l o c a l vars)
3 f in ish {
4 // Compute sum1 (lower h a l f) and sum2 (upper h a l f) in p a r a l l e l
5 int l en = X. length
6 async for (int i=0 ; i < l en /2 ; i++) sum1 += X[i] ; // Task T2
7 async for (int i=l en /2 ; i < l en ; i++) sum2 += X[i] ; // Task T3
8 }
9 //Task T1 waits f o r Tasks T2 and T3 to complete

10 int sum = sum1 + sum2 ; // Continuat ion o f Task T1

Listing 10: Two-way Parallel ArraySum in HJ

In this pseudocode, the two async statements in lines 6 and 7 capture the value of local variable, len, from
their outer scope, and the actual implementation of these statements using Java lambdas effectively creates
closures for teh bodies of the async statements.

7.1.1 Using Runnable objects with Java threads

As a historical alternative to lambdas, the Runnable interface [9] in Java embodies a convention used by
programmers to create a limited form of closures in Java. Any instance of a class that implements the
Runnable interface must contain a run() method with a void return type. As an example, the following
Java code in Listing 11 shows how the body of the first async in line 6 of Listing 10 can be created as a
Runnable instance:

1 . . .
2 f ina l int l en = X. length ;
3 Runnable r = new Runnable () {
4 public void run () {
5 for (int i=0 ; i < l en /2 ; i++) sum1 += X[i] ;
6 }
7 } ;
8 . . .

24 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

Listing 11: Example of creating a Java Runnable instance as a closure

The new constructor in line 3 creates an instance of an anonymous inner class defined in lines 3–7 and assigns
a reference to that instance to variable r. It is an inner class because it is declared within an existing class,
and it is anonymous because it has been declared without a name. This class will only be accessible only
at the point where it is defined. It can access any local final variables in the scope that it’s defined, such as
variable len in line 2. Unlike the HJ case, it is an error to access len in a Java anonymous inner class if len
was not declared to be final.

Anonymous inner classes were originally intended for advanced Java users, and little attention was paid to
simplifying their usage. However, a number of mainstream libraries for event handling (e.g., java.awt.EventQueue)
and for parallel programming (java.util.concurrent) expect client code to create instances of Runnable,
which is most conveniently achieved via anonymous inner classes. Thus, even though the syntax for anony-
mous inner classes is quite cryptic in Java, many Java programmers have to learn this syntax so that they
can use these libraries.

A summary of the Java Threads functionality can be found in the definition of the standard java.lang.Thread
class [4], which is defined as follows:

1 public class Thread extends Object implements Runnable {
2 Thread () { . . . } // Creates a new Thread
3 Thread (Runnable r) { . . . } // Creates a new Thread with Runnable ob j e c t r
4 void run () { . . . } // Code to be executed by thread
5 // Case 1 : I f t h i s thread was c reated us ing a Runnable object ,
6 // then that ob j e c t ’ s run method i s c a l l e d
7 // Case 2 : I f t h i s c l a s s i s subc las sed , then the run () method
8 // in the subc l a s s i s c a l l e d
9 void start () { . . . } // Causes t h i s thread to s t a r t execut ion

10 void join () { . . . } // Wait f o r t h i s thread to d i e
11 void join (long m) // Wait at most m mi l l i s e c ond s f o r thread to d i e
12 stat ic Thread currentThread () // Returns cu r r en t l y execut ing thread
13 . . .
14 }

Listing 12: java.lang.Thread class

Execution of a Java program begins with an instance of Thread created by the Java Virtual Machine (JVM)
that executes the program’s main() method. Parallelism can be introduced by creating additional instances
of class Thread that execute as parallel threads. The static method, Thread.currentThread(), returns a
reference to the currently executing thread.

Threads have richer functionality than async tasks, but are also more expensive. Earlier, we saw that the
overhead of Java threads can be more than 10× greater than that of async tasks implemented with work-
sharing schedulers, and more than 1000× greater than that of async tasks implemented with work-stealing
schedulers. As a result, it is usually not practical to create large numbers of Java threads in a single program
execution.

There are two ways to specify the code to be executed by a Java thread:

1. Define a class that implements the Runnable interface and pass an instance of that class to the Thread
constructor in line 3 of Listing 12. It is common to create an instance of an anonymous inner class
that implements Runnable for this purpose, as discussed in Section 7.1.1. In this case, the Runnable

instance defines the work to be performed, and the Thread instance identifies the worker that will
perform the work.

25 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

2. Subclass Thread and override the run() method. This is usually inconvenient in practice.

When an instance of Thread is created, it does not start executing right away. Instead, it can only start
executing when its start() method is invoked. (start() can be invoked at most once per Thread instance.)
As with async, the parent thread can immediately move to the next statement after invoking t.start().

The operation analogous to finish is join(). A t.join() call forces the invoking thread to wait till thread
t completes. This is a lower-level primitive than finish since it only waits for a single thread rather than a
collection of threads. Further, there is no restriction on which thread performs a join on which thread, so
it is easy for a programmer to erroneously create a deadlock cycle with join operations. Likewise, there is
no analog of an Immediately Enclosing Finish for Java threads

Putting it all together, Listing 13 shows a Java threads version of the HJ code in Listing 10. It is instructive
to compare the two versions and see the differences. There are three steps in initiating a thread to execute
a computation analogous to async. The first step is to create a Runnable instance as in lines 5–7 for r1 and
lines 10–12 for r2. The bodies of the run() methods in lines 6 and 11 specify the work that was done in the
two async statements in Listing 10. The next step is to create a Thread instance as in lines 8 and 13 for t1
and t2. The third step is to start the threads as in line 9 and 14. After the threads have been created, the
parent waits for their completion by performing the join() calls in line 16.

1 // Star t o f Task T1 (main program)
2 sum1 = 0 ; sum2 = 0 ; // Assume that sum1 & sum2 are f i e l d s (not l o c a l vars)
3 // Compute sum1 (lower h a l f) and sum2 (upper h a l f) in p a r a l l e l
4 f ina l int l en = X. length ;
5 Runnable r1 = new Runnable () {
6 public void run (){ for (int i=0 ; i < l en /2 ; i++) sum1 += X[i] ; }
7 } ;
8 Thread t1 = new Thread (r1) ;
9 t1 . start () ;

10 Runnable r2 = new Runnable () {
11 public void run (){ for (int i=l en /2 ; i < l en ; i++) sum2 += X[i] ; }
12 } ;
13 Thread t2 = new Thread (r2) ;
14 t2 . start () ;
15 // Wait f o r threads t1 and t2 to complete
16 t1 . join () ; t2 . join () ;
17 int sum = sum1 + sum2 ;

Listing 13: Two-way Parallel ArraySum using Java threads

7.1.2 Using Callable objects with Java threads

In the previous section, you learned how the start() and join() operations in the Java Thread class can be
used to support the functionality of async and finish statements (albeit with greater overhead). With some
additional steps, this approach can be extended to also support future tasks. It builds on the Callable

interface introduced in Java 5 [1]. Any instance of a class that implements the Callable<V> interface must
contain a call() method with a V return type. As a simple example of using Callable, consider the
following sequential Java code in Listing 14:

1 ImageData image1 = imageInfo . downloadImage (1) ;
2 ImageData image2 = imageInfo . downloadImage (2) ;
3 . . .
4 renderImage (image1) ;
5 renderImage (image2) ;

Listing 14: HTML renderer in Java before decomposition into Callable tasks

26 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

This code can be rewritten as follows (Listing 15) by encapsulating the two calls to downloadImage() in
Callable objects in lines 1–4. As a result, the actual invocation of these calls is postponed to lines 6 and 7
when the call() method is invoked on the Callable objects.

1 Cal lab l e<ImageData> c1 = new Cal lab le<ImageData>() {
2 public ImageData c a l l () {return imageInfo . downloadImage (1) ; } } ;
3 Ca l lab l e<ImageData> c2 = new Cal lab le<ImageData>() {
4 public ImageData c a l l () {return imageInfo . downloadImage (2) ; } } ;
5 . . .
6 renderImage (c1 . c a l l ()) ;
7 renderImage (c2 . c a l l ()) ;

Listing 15: HTML renderer in Java after decomposition into Callable tasks

However, this use of Callable objects does not directly lead to parallelism because there is no Thread

constructor that takes a Callable object as input. Instead, we need to wrap the Callable object in an object
that implements the Runnable interface. A convenient adapter class for this purpose is FutureTask<V> [3].
It has a constructor, FutureTask(Callable<V> c), that takes a Callable instance as a parameter. With
this adapter, the following sequence of steps can be used to execute a Callable object in a separate thread:

1. Create a parameter-less callable closure using a statement like
“Callable<Object> c = new Callable<Object>() {public Object call() { return ...; }}; ”.

2. Encapsulate the closure as a task using a statement like
“FutureTask<Object> ft = new FutureTask<Object>(c);”.

3. Start executing the task in a new thread by issuing the statement, “new Thread(ft).start();”.

4. Wait for the task to complete, and get its result by issuing the statement, “Object o = ft.get();”.

These steps can be used to transform the code to Listing 15 to a parallel version shown below in Listing 16:

1 Cal lab l e<ImageData> c1 = new Cal lab le<ImageData>() {
2 public ImageData c a l l () {return imageInfo . downloadImage (1) ; } } ;
3 FutureTask<Object> f t 1 = new FutureTask<Object>(c1) ;
4 new Thread (f t 1) . start () ;
5 Ca l lab l e<ImageData> c2 = new Cal lab le<ImageData>() {
6 public ImageData c a l l () {return imageInfo . downloadImage (2) ; } } ;
7 FutureTask<Object> f t 2 = new FutureTask<Object>(c2) ;
8 new Thread (f t 2) . start () ;
9 . . .

10 renderImage (f t 1 . get ()) ;
11 renderImage (f t 2 . get ()) ;

Listing 16: HTML renderer in Java after parallelization of Callable tasks

Note that the above code in Listing 16 is just equivalent to the following HJ code in Listing 17 using future

tasks (other than the fact that Thread creation in Java is more expensive than task creation in HJ):

1 future<ImageData> f t 1 = async<ImageData>{return imageInfo . downloadImage (1) ; } ;
2 future<ImageData> f t 2 = async<ImageData>{return imageInfo . downloadImage (2) ; } ;
3 . . .
4 renderImage (f t 1 . get ()) ;
5 renderImage (f t 2 . get ()) ;

Listing 17: Equivalent HJ code for the parallel Java code in Listing 16

27 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

7.2 Synchronized Statements and Methods in Java

The previous sections showed how async and future tasks in HJ can be implemented in standard Java using
threads and instances of Runnable and Callable objects. Now let us consider how to implemented HJ’s
isolated statement. You have already learned how the java.util.concurrent.atomic package can be
used to implement special cases of isolated statements. The key mechanism that can be used to implement
more general forms of isolated statements (including critical sections) is locks. The basic idea behind the
use of locks is to implement a statement such as isolated <stmt> as follows:

1. Acquire lock Li

2. Execute <stmt>

3. Release lock Li

The responsibility for ensuring that the choice of locks correctly implements the semantics of isolated falls
entirely on the shoulders of the programmer. The main guarantee provided by locks is that only one thread
can hold a lock at a time, and the thread is blocked if the lock is unavailable.

The Java language attempts to simplify the use of locks by providing the following built-in support:

• Every Java object and Java class has an associated lock which can be accessed by using the synchronized
statement.

• The statement, synchronized(p) <stmt> acquires the lock for object p, executes <stmt>, and releases
the lock for object p. (The lock is released even if an exception is thrown in stmt.) There is no constraint
that the data accesses in <stmt> be confined to members of object p.

• A method can also be declared to be synchronized. If it is a virtual method, then the method is
executed as if its body was enclosed in a “synchronized (this)” statement i.e., it is guarded by the
lock for the underlying object. If it is a static method, then it is executed as if its body was enclosed
in a “synchronized (A.class)” statement i.e., it is guarded by the lock for the underlying class (A).

• synchronized statements may be nested.

• Reentrant (“recursive”) locking is permitted if two nested synchronized statements executed in the
same thread attempt to acquire the same lock.

7.3 Java Locks

Coordination and synchronization of parallel tasks is a major source of complexity in parallel programming.
These constructs take many forms in practice including directed barrier and point-to-point synchronizations,
termination detection of child tasks, and mutual exclusion in accesses to shared resources. A read-write
lock is a synchronization primitive that supports mutual exclusion in cases when multiple reader threads are
permitted to enter a critical section concurrently (read-lock), but only a single writer thread is permitted in
the critical section (write-lock). Although support for reader threads increases ideal parallelism, the read-
lock functionality typically requires additional mechanisms, including expensive atomic operations, to handle
multiple readers. It is not uncommon to encounter cases in practice where the overhead to support read-lock
operations overshadows the benefits of concurrent read accesses, especially for small critical sections. As a
result, the use of read-write locks can often degrade overall performance relative to standard fine-grained
locks, due to the overheads involved.

7.4 Linearizability of Concurrent Objects

A concurrent object is an object that can correctly handle methods invoked in parallel by different tasks or
threads. Concurrent objects were originally referred to as monitors [25], and are also informally referred to
as “thread-safe objects”. For simplicity, it is usually assumed that the body of each method in a concurrent

28 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

object is itself sequential i.e., it does not create child async tasks. A classical approach to making a class
thread-safe (that dates back to the original concept of monitors) is to enclose each of its methods in a
critical section to guarantee mutual exclusion. However, this approach leads to scalability bottlenecks since
it effectively serializes all method invocations on the same object.

Examples of concurrent objects include java.util.concurrent collection classes, such as Concurrent-

HashMap, ConcurrentLinkedQueue and CopyOnWriteArraySet. Instances of these classes are concurrent
objects that are designed for high scalability in the presence of method invocations from parallel tasks. In
addition, these classes ensure that all their methods are nonblocking. In general, it is very challenging to
design and implement concurrent objects with these scalability and nonblocking properties, while retaining
semantics equivalent to that of monitors. In this section, we discuss an important correctness property of
concurrent objects called linearizability [22, 21], which guarantees semantics equivalent to that of methods
in critical sections.

A formal definition of linearizability can be found in [22, 21]. An informal definition is as follows:

1. A linearizable execution is one in which the semantics of a set of method calls performed in parallel on
a concurrent object is equivalent to that of some legal linear sequence of those method calls.

2. A linearizable concurrent object is one for which all possible executions are linearizable.

To understand this definition of linearizability, consider a canonical example of a concurrent object — a
FIFO (First In, First Out) queue. A FIFO queue, q, typically supports two methods: q.enq(o) inserts
object o at the tail of the queue and q.deq() removes and returns the item at the head of the queue. The
q.deq() method call will typically throw an exception (e.g., EmptyException) if the queue is empty. For
simplicity, let us assume that we have unbounded space to store the queue. If (as in real-world situations)
we have a bounded amount of space for the queue, then the q.enq(o) method call will throw an exception
if the queue is full.

Consider two async tasks, A and B, repeatedly performing enq() and deq() operations on the FIFO queue.
Table 4 shows one possible execution of a monitor-based implementation of a FIFO queue using critical
sections. The critical sections ensure that none of the enq() and deq() methods run in parallel with each
other. This is a linearizable execution because its semantics is equivalent to the following sequence:

q.enq(x) ; q.enq(y) ; q.deq() returns x

Now consider a concurrent (rather than a monitor-based) implementation of a FIFO queue, such as Java’s
ConcurrentLinkedQueue. One possible parallel execution is shown as a schedule in Table 5. This is a
linearizable execution because its semantics is equivalent to the following sequence:

q.enq(x) ; q.enq(y) ; q.deq() returns x

In fact, the execution in Table 5 would also be linearizable if the q.deq() operation returned y instead of x
at time t = 5 in Table 5. In this case, its semantics would be equivalent to the following sequence:

q.enq(y) ; q.enq(x) ; q.deq() returns y

We have the flexibility of considering different sequences for the schedule in Table 5 because of the parallel
overlap between operations q.enq(x) and q.enq(y).

Another way of understanding linearizability is that each method call of a linearizable concurrent object
should appear to take effect “instantaneously” at some point in time between its invocation and return. For
the schedule in Table 5, we can assume that (say) q.enq(x) took effect at time t = 1 and q.enq(y) took
effect at time t = 2. For the alternate schedule, we can assume that (say) q.enq(x) took effect at time t =3
and q.enq(y) took effect at time t = 2. We can assume that q.deq() took effect at time t = 4 in both cases.

29 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

Time Task A Task B
0 Invoke q.enq(x)

1 Work on q.enq(x)

2 Work on q.enq(x)

3 Return from q.enq(x)

4 Invoke q.enq(y)

5 Work on q.enq(y)

6 Work on q.enq(y)

7 Return from q.enq(y)

8 Invoke q.deq()

9 Return x from q.deq()

Table 4: Example of a linearizable execution of method calls on a monitor-based implementation of FIFO
queue q by parallel tasks A and B

Time Task A Task B
0 Invoke q.enq(x)

1 Work on q.enq(x) Invoke q.enq(y)

2 Work on q.enq(x) Return from q.enq(y)

3 Return from q.enq(x)

4 Invoke q.deq()

5 Return x from q.deq()

Table 5: Example of a linearizable execution of method calls on a concurrent FIFO queue q by parallel tasks
A and B (source: Figure 1 in [22])

Time Task A Task B
0 Invoke q.enq(x)

1 Return from q.enq(x)

2 Invoke q.enq(y)

3 Invoke q.deq() Work on q.enq(y)

4 Work on q.deq() Return from q.enq(y)

5 Return y from q.deq()

Table 6: Example of a non-linearizable execution of method calls on a concurrent FIFO queue q by parallel
tasks A and B (source: Figure 1 in [22])

30 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

i-begin q.enq(x) i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Continue edge

Serialization edge

Task B

Task A

Figure 15: A Computation Graph for the execution in Table 4. i-begin and i-end refer to the beginning and
end of isolated statements. q.deq():x refers to a dequeue operation that returns x.

For the monitor-based implementation in Table 4, we have no choice but to pick times consistent with the
q.enq(x) ; q.enq(y) ; q.deq() sequence.

Now, consider the parallel execution shown in Table 6. In this case, there is no parallel overlap between
q.enq(x) and q.enq(y) since the return from q.enq(x) precedes the invocation of q.enq(y). Thus,
q.enq(x) must precede q.enq(y) in all linear sequences of method calls invoked on q, and it would be
illegal for the next q.deq() operation to return y. Hence, the execution in Table 6 is non-linearizable.

Even with this brief discussion, it should be clear that linearizability is a desirable correctness property for
concurrent objects.

7.4.1 Relating Linearizability to the Computation Graph model

How does the definition of linearizability in Section 7.4 relate to the Computation Graph (CG) model that
we have studied in the class? Since each method executed on a concurrent object is assumed to be sequential,
the method’s execution can be represented in the CG as a sequence of nodes (steps) connected by continue
edges. Some of these nodes will be instances of isolated statements, and each such node may be the source
and/or destination of serialization edges as a result.

Figure 15 shows a CG for the monitor-based FIFO execution shown in Table 4. Since it’s a monitor-based
implementation, we assume that each enq() and deq() method is enclosed in an isolated statement. The
i-begin and i-end nodes refer to the beginning and end of isolated statements, and q.deq():x refers to
a dequeue operation that returns x. As before, the CG contains continue edges and serialization edges to
represent orderings within and across tasks.

Recall the following rule for adding serialization edges to a CG:

Each time an isolated step, S′, is executed, we add a serialization edge from S to S′ for each
isolated step, S, that has already executed.

That is why we have two serialization edges from Task A to Task B in Figure 15, even though the second
edge is redundant (transitive) if we take the continue edges in Task B into account. (For simplicity, we omit
serialization edges when the source and destination steps belong to the same task, so there is no serialization
edge from the first i-end node to the second i-begin node in Task B.) It is clear from this CG that the
only legal sequence for the operations on q in this execution is q.enq(x);q.enq(y);q.deq():x. However,
different executions with different serialization edges could lead to sequences q.enq(y);q.enq(x);q.deq():y
and q.enq(y);q.deq():y;q.enq(x).

The concept of a method call taking effect “instantaneously” can be translated to the CG by creating a
reduced method-level version of the CG as shown in Figure 16. This reduction can be defined as follows:
take the sequence of CG nodes ai corresponding to a method call of interest and “collapse” it into a single
node b to obtain a new graph, CG′. Each edge with source ai in CG is redirected to source b in CG′. Likewise,

31 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

i-begin q.enq(x) i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Method q.enq(x)

Method q.enq(y) Method q.deq():x

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Computation Graph

Method-level Reduced Graph

Figure 16: Reduced method-level graph for CG in Figure 15

i-begin q.enq(x)1 i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Continue edge Serialization edge

Task B

Task A

q.enq(x)2 i-begin q.enq(x)3 i-end

Figure 17: A Computation Graph for the execution in Table 5. q.enq(x)1, q.enq(x)2 and q.enq(x)3 refer
to three steps in the q.enq(x) method, the first and third of which are enclosed in isolated statements.

each edge with destination ai in CG is redirected to destination b in CG′. Finally, if these redirections result
in any self-loop edges of the form b→ b in CG′, those self-loop edges are removed from CG′.

Given a reduced CG, a sufficient condition for linearizability is that the reduced CG is acyclic as in Figure 16.
This means that if the reduced CG does not contain a directed cycle, then the underlying execution must
be linearizable. However, the converse is not necessarily true, as we will see.

Figure 17 shows a CG for the concurrent FIFO execution shown in Table 5. For this example, we assumed
that the concurrent implementation split the the q.enq(x) method into three steps — q.enq(x)1, q.enq(x)2
and q.enq(x)3 — the first and third of which are enclosed in isolated statements. However, the q.enq(y)

and the q.deq():x operations were implemented as single steps. Note that Figure 17 shows serialization
edges that are consistent with the execution in Table 5.

Figure 18 shows the reduced method-level graph for the CG in Figure 17. This graph has a cycle because
it contains edges in both directions between q.enq(x) and q.enq(y). However, this execution is still
linearizable, as discussed earlier. This confirms that it is not necessary that the reduced CG of a linearizable
execution be acyclic.

32 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

i-begin q.enq(x)1 i-end

i-begin q.enq(y) i-end i-begin q.deq():x i-end

Continue edge Serialization edge
Task B

Task A

q.enq(x)2 i-begin q.enq(x)3 i-end

Computation Graph

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Method
q.enq(x)

Method
q.enq(y)

Method
q.deq():x

Method-level Reduced Graph

Figure 18: Reduced method-level graph for CG in Figure 17

A Java Concurrent Collections

One of the biggest successes in object-oriented programming has been the creation of frameworks that
encapsulate reusable code in different domains. A foundational domain that has received a lot of attention
in this regard is collection data structures. A collection (container) is a data structure that “collects” multiple
element objects into a single group. The Java Collections Framework [13] includes a number of collection
classes, some of which you may have already encountered when learning how to write sequential programs
in Java (e.g., Vector, ArrayList, Stack, TreeSet, and HashMap). These classes implement interfaces such
as List, Queue, Set, SortedSet, and Map.

While the original Java Collections Framework (JCF) has been very successful for sequential programs,
they pose a number of limitations for parallel programs. Many of the original JCF classes attempted to be
“thread-safe” by ensuring that each public method in the class is “synchronized” i.e., acquires and releases
a single lock on the collection each time a public method is invoked on the collection. Though simple, the
one-lock-per-collection approach proved to be limiting in multiple ways — it did not offer a convenient way
to lock multiple collections at the same time, it ended up serializing more computations than needed (thereby
exacerbating the effect of Amdahl’s Law), and it did not provide a clean deadlock avoidance guarantee as
with HJ isolated statements.

Instead, it is more desirable to provide collection classes that are designed for concurrency up-front, and
can provide the simplicity of isolated semantics coupled with the performance and scalability advantages
akin to those offered by Java atomic variables. The java.util.concurrent collection classes [28, 17]
address this requirement. We will discuss three of these classes in this section: ConcurrentHashMap,
ConcurrentLinkedQueue and CopyOnWriteArraySet. All operations in these three classes are nonblock-
ing and can be freely used in any HJ program, just like the j.u.c.atomic.* classes. Note that there
are many j.u.c. classes that include blocking operations, and should not be used in an HJ program e.g.,
ArrayBlockingQueue, CountDownLatch, CyclicBarrier, DelayQueue, Exchanger, FutureTask, LinkedBlockingQueue,
Phaser PriorityBlockingQueue, Semaphore, and SynchronousQueue. However, most of these classes pro-
vide functionalities that are already available in HJ e.g., CyclicBarrier, Phaser, CountDownLatch, and

33 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

Semaphore are all subsumed by HJ phasers.

A.1 java.util.concurrent.ConcurrentHashMap

The Map interface in Java [6] is used to define key-value mappings for a given domain. It includes basic
operations such as put(key,value), get(key) and remove(key). There are many applications where it is
important to keep track of key-value mappings including software caches (where a program stores key-value
maps obtained from an external source such as a database), dictionaries, and even sparse arrays.

There are multiple implementations for the Map interface available in a Java runtime environment. The
HashMap class is completely unsynchronized and assumes that all necessary synchronization is handled by
the caller. In the absence of detailed knowledge of the internals of the HashMap implementation, any client
will likely play safe and ensure that an entire operation such as put or get is performed in a isolated

statement or while some lock is held. However, these operations may take more than constant time due
to traversals of multiple objects and the need to call an equals() method on each object traversed. As a
result, this approach could add significantly to the serialization in a parallel program.

The j.u.c.ConcurrentHashMap class package implements the Map interface with more parallelism (less serial-
ization) in a parallel context than the approaches discussed above. In fact, it implements the ConcurrentMap
sub-interface of Map which includes four additional methods — putIfAbsent(key,value), remove(key,value),
replace(key,value), and replace(key,oldValue,newValue).

An instance of ConcurrentHashMap permits retrieval operations, such as get(), to overlap with update
operations, such as put() and remove(). The result of a get() operation will depend on which update
operations have completed prior to the start of the get(). Thus, single-element operations such as put(),
get(), and remove() all appear to be atomic with respect to each other.

However, ConcurrentHashMap also supports aggregate operations such as putAll() and clear(). It is not
practical to make these operations appear atomic in a parallel context since they involve multiple elements.
As a result, a single-element operation may observe an intermediate state where only some of the entries
being inserted by a putAll() operation have been inserted, or where only some of the entries being removed
by a clear() operation have been removed.

Given the widespread use of multithreaded and parallel applications in mainstream software, the ConcurrentHashMap
is increasing in popularity. Listing 18 shows a sample usage of ConcurrentHashMap from an open source
project.

1 public abstract class BaseDirectory extends BaseItem implements Direc tory {
2 Map f i l e s = new ConcurrentHashMap () ;
3 . . .
4 public Map g e tF i l e s () {
5 return f i l e s ;
6 }
7 public boolean has (F i l e item) {
8 return g e tF i l e s () . containsValue (item) ;
9 }

10 public Direc tory add (F i l e f i l e) {
11 St r ing key = f i l e . getName () ;
12 i f (key == null) throw new Error (. . .) ;
13 g e tF i l e s () . put (key , f i l e) ;
14 . . .
15 return this ;
16 }
17 public Direc tory remove(F i l e item) throws NotFoundException {
18 i f (has (item)) {
19 g e tF i l e s () . remove(item . getName ()) ;
20 . . .
21 } else throw new NotFoundException (”can ’ t remove unre la t ed item”) ;

34 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

22 }
23 }

Listing 18: Example usage of ConcurrentHashMap in org.mirrorfinder.model.BaseDirectory [2]

A.2 java.util.concurrent.ConcurrentLinkedQueue

The Queue interface in Java [7] defines a collection of elements typically inserted and removed in FIFO
(first-in-first-out) order, using operations such as add() and poll(). The j.u.c.ConcurrentLinkedQueue

class implements the Queue interface with more parallelism (less serialization) than a synchronized queue.
Consistent with FIFO order, new elements are inserted at the tail of the queue, and the queue retrieval
operations obtain elements at the head of the queue.

There is no bound on the size of a ConcurrentLinkedQueue, so an add(o) operation for a non-null object
always succeeds (assuming that the program does not run out of memory). offer(o) is an alternative name
for add(o).

The semantics for removing an object from a queue leads to some interesting possibilities. There is a
remove(o) operation that attempts to remove a specified object and returns null if the object is in the queue.
The ConcurrentLinkedQueue class also has a poll() operation that returns null if the queue is empty and
removes the head of the queue otherwise. This is in contrast to the LinkedBlockingQueue.take() operation
which blocks when the queue is empty.

Like ConcurrentHashMap, ConcurrentLinkedQueue is also widely used in practice. Listing 19 shows a
sample usage of ConcurrentLinkedQueue from an open source project.

1 class BufferPool15Impl implements Buf fe rPoo l . BufferPoolAPI {
2 protected int maxSize ;
3 protected AtomicInteger s i z e = new AtomicInteger (0) ;
4 protected ConcurrentLinkedQueue queue = new ConcurrentLinkedQueue () ;
5 . . .
6 public XByteBuffer g e tBu f f e r (int minSize , boolean d i s ca rd) {
7 XByteBuffer bu f f e r = (XByteBuffer) queue . poll () ;
8 i f (bu f f e r != null) s i z e .addAndGet(−bu f f e r . getCapacity ()) ;
9 i f (bu f f e r == null) bu f f e r = new XByteBuffer (minSize , d i s ca rd) ;

10 else i f (bu f f e r . getCapacity () <= minSize) bu f f e r . expand (minSize) ;
11 . . .
12 return bu f f e r ;
13 }
14 public void r e tu rnBu f f e r (XByteBuffer bu f f e r) {
15 i f ((s i z e . get () + bu f f e r . getCapacity ()) <= maxSize) {
16 s i z e .addAndGet(bu f f e r . getCapacity ()) ;
17 queue . offer (bu f f e r) ;
18 }
19 }
20 }

Listing 19: Example usage of ConcurrentLinkedQueue in org.apache.catalina.tribes.io.BufferPool15Impl [8]

A.3 java.util.concurrent.CopyOnWriteArraySet

Like a set in Mathematics, the Set interface in Java [10] defines a collection of elements that is prohibited
from containing any duplicates, as defined by the equals() method on the objects in the collection. The
j.u.c.CopyOnWriteArraySet class implements the Set interface with more parallelism (less serialization)
than a synchronized set data structure by using an array-based data structure. Unlike ConcurrentHashMap

and ConcurrentLinkedQueue, the CopyOnWriteArraySet class achieves thread safety by making copies of
the set as needed. This makes it well suited for applications in which sets are not large, and read operations

35 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

dominate update operations in frequency. This is because update operations such as add() and remove()

involve making copies of the array. However, iterators can traverse array “snapshots” efficiently without
worrying about changes during the traversal.

Listing 20 shows a sample usage of CopyOnWriteArraySet from an open source project.

36 of 39

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

1 public class DefaultTemplateLoader implements TemplateLoader , S e r i a l i z a b l e
2 {
3 private Set r e s o l v e r s = new CopyOnWriteArraySet () ;
4 public void addResolver (ResourceReso lver r e s)
5 {
6 r e s o l v e r s .add(r e s) ;
7 }
8 public boolean t emplateEx i s t s (S t r ing name)
9 {

10 for (I t e r a t o r i = r e s o l v e r s . iterator () ; i . hasNext () ;) {
11 i f (((ResourceReso lver) i . next ()) . r e s ou r c eEx i s t s (name)) return true ;
12 }
13 return fa lse ;
14 }
15 public Object f indTemplateSource (S t r ing name) throws IOException
16 {
17 for (I t e r a t o r i = r e s o l v e r s . iterator () ; i . hasNext () ;) {
18 CachedResource r e s = ((ResourceReso lver) i . next ()) . getResource (name) ;
19 i f (r e s != null) return r e s ;
20 }
21 return null ;
22 }
23 }

Listing 20: Example usage of CopyOnWriteArraySet in org.norther.tammi.spray.freemarker.DefaultTemplateLoader
[11]

References

[1] java.lang.Callable interface. URL http://download.oracle.com/javase/1.5.0/docs/api/java/

util/concurrent/Callable.html.

[2] ConcurrentHashMap Java Source Code example from org.mirrorfinder.model.BaseDirectory. URL
http://www.javadocexamples.com/java_source/org/mirrorfinder/model/BaseDirectory.java.

html.

[3] java.util.concurrent.FutureTask class. URL http://download.oracle.com/javase/1.5.0/docs/api/

java/util/concurrent/FutureTask.html.

[4] java.lang.Thread. URL http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Thread.

html.

[5] Package java.util.concurrent.atomic. URL http://download.oracle.com/javase/1.5.0/docs/api/

java/util/concurrent/atomic/package-summary.html.

[6] The Map Interface. URL http://download.oracle.com/javase/tutorial/collections/

interfaces/map.html.

[7] The Queue Interface, . URL http://download.oracle.com/javase/tutorial/collections/

interfaces/queue.html.

[8] ConcurrentLinkedQueue Java Source Code example from org.apache.catalina.tribes.io.BufferPool15Impl,
. URL http://www.javadocexamples.com/java_source/org/apache/catalina/tribes/io/

BufferPool15Impl.java.html.

37 of 39

http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/Callable.html
http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/Callable.html
http://www.javadocexamples.com/java_source/org/mirrorfinder/model/BaseDirectory.java.html
http://www.javadocexamples.com/java_source/org/mirrorfinder/model/BaseDirectory.java.html
http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/FutureTask.html
http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/FutureTask.html
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Thread.html
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Thread.html
http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/atomic/package-summary.html
http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/atomic/package-summary.html
http://download.oracle.com/javase/tutorial/collections/interfaces/map.html
http://download.oracle.com/javase/tutorial/collections/interfaces/map.html
http://download.oracle.com/javase/tutorial/collections/interfaces/queue.html
http://download.oracle.com/javase/tutorial/collections/interfaces/queue.html
http://www.javadocexamples.com/java_source/org/apache/catalina/tribes/io/BufferPool15Impl.java.html
http://www.javadocexamples.com/java_source/org/apache/catalina/tribes/io/BufferPool15Impl.java.html

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

[9] java.lang.Runnable interface. URL http://download.oracle.com/javase/1.5.0/docs/api/java/

lang/Runnable.html.

[10] The Set Interface, . URL http://download.oracle.com/javase/tutorial/collections/

interfaces/set.html.

[11] CopyOnWriteArraySet Java Source Code example from org.norther.tammi.spray.freemarker.DefaultTemplateLoader,
. URL http://www.javadocexamples.com/java_source/org/norther/tammi/spray/freemarker/

DefaultTemplateLoader.java.html.

[12] Gul Agha. Actors: a model of concurrent computation in distributed systems. MIT Press, Cambridge,
MA, USA, 1986. ISBN 0-262-01092-5.

[13] Joshua Bloch. Java Collections Framework. URL http://download.oracle.com/javase/tutorial/

collections.

[14] Shailender Chaudhry, Robert Cypher, Magnus Ekman, Martin Karlsson, Anders Landin, Sherman Yip,
H̊akan Zeffer, and Marc Tremblay. Rock: A high-performance sparc cmt processor. IEEE Micro, 29:6–16,
March 2009. ISSN 0272-1732. URL http://portal.acm.org/citation.cfm?id=1550399.1550516.

[15] L. Dagum and R. Menon. OpenMP: An industry standard API for shared memory programming. IEEE
Computational Science & Engineering, 1998.

[16] Edsger W. Dijkstra. The structure of the “the”-multiprogramming system. In Proceedings of the first
ACM symposium on Operating System Principles, SOSP ’67, pages 10.1–10.6, New York, NY, USA,
1967. ACM. URL http://doi.acm.org/10.1145/800001.811672.

[17] B. Goetz. Java Concurrency In Practice. Addison-Wesley, 2007.

[18] A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. Rudolph, and M. Snir. The nyu ultra-
computer — designing an mimd shared memory parallel computer. IEEE Transactions on Computers,
32:175–189, 1983. ISSN 0018-9340. URL http://doi.ieeecomputersociety.org/10.1109/TC.1983.

1676201.

[19] Allan Gottlieb, Boris D. Lubachevsky, and Larry Rudolph. Basic techniques for the efficient coordination
of very large numbers of cooperating sequential processors. ACM Trans. Program. Lang. Syst., 5:164–
189, April 1983. ISSN 0164-0925. URL http://doi.acm.org/10.1145/69624.357206.

[20] Habanero. Habanero Java programming language. http://habanero.rice.edu/hj, Dec 2009.

[21] Maurice Herlihy and Nir Shavit. The art of multiprocessor programming. Morgan Kaufmann, 2008. ISBN
978-0-12-370591-4. URL http://www.elsevierdirect.com/companion.jsp?ISBN=9780123705914.

[22] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst., 12:463–492, July 1990. ISSN 0164-0925. URL http:

//doi.acm.org/10.1145/78969.78972.

[23] Carl Hewitt, Peter Bishop, and Richard Steiger. Artificial Intelligence A Universal Modular ACTOR
Formalism for Artificial Intelligence. Proceedings of the 3rd International Joint Conference on Artificial
Intelligence, Stanford, CA, August 1973.

[24] Hewitt, Carl and Baker, Henry G. Actors and Continuous Functionals. Technical report, Massachusetts
Institute of Technology, Cambridge, MA, USA, February 1978.

[25] C. A. R. Hoare. Monitors: an operating system structuring concept, pages 272–294. Springer-Verlag
New York, Inc., New York, NY, USA, 2002. ISBN 0-387-95401-5. URL http://portal.acm.org/

citation.cfm?id=762971.762982.

38 of 39

http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Runnable.html
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Runnable.html
http://download.oracle.com/javase/tutorial/collections/interfaces/set.html
http://download.oracle.com/javase/tutorial/collections/interfaces/set.html
http://www.javadocexamples.com/java_source/org/norther/tammi/spray/freemarker/DefaultTemplateLoader.java.html
http://www.javadocexamples.com/java_source/org/norther/tammi/spray/freemarker/DefaultTemplateLoader.java.html
http://download.oracle.com/javase/tutorial/collections
http://download.oracle.com/javase/tutorial/collections
http://portal.acm.org/citation.cfm?id=1550399.1550516
http://doi.acm.org/10.1145/800001.811672
http://doi.ieeecomputersociety.org/10.1109/TC.1983.1676201
http://doi.ieeecomputersociety.org/10.1109/TC.1983.1676201
http://doi.acm.org/10.1145/69624.357206
http://www.elsevierdirect.com/companion.jsp?ISBN=9780123705914
http://doi.acm.org/10.1145/78969.78972
http://doi.acm.org/10.1145/78969.78972
http://portal.acm.org/citation.cfm?id=762971.762982
http://portal.acm.org/citation.cfm?id=762971.762982

COMP 322
Spring 2024

COMP 322: Fundamentals of Parallel Programming

Module 2: Concurrency

[26] Shams Imam, Jisheng Zhao, and Vivek Sarkar. A composable deadlock-free approach to object-based
isolation. In Jesper Larsson Träff, Sascha Hunold, and Francesco Versaci, editors, Euro-Par 2015:
Parallel Processing, volume 9233 of Lecture Notes in Computer Science, pages 426–437. Springer Berlin
Heidelberg, 2015. ISBN 978-3-662-48095-3. doi: 10.1007/978-3-662-48096-0 33. URL http://dx.doi.

org/10.1007/978-3-662-48096-0_33.

[27] James R. Larus and Ravi Rajwar. Transactional Memory. Morgan and Claypool, 2006. URL http:

//www.morganclaypool.com/doi/abs/10.2200/S00070ED1V01Y200611CAC002.

[28] Qusay H. Mahmoud. Concurrent Programming with J2SE 5.0, March 2005. URL http://java.sun.

com/developer/technicalArticles/J2SE/concurrency/.

[29] Rashid Bin Muhammad. Trees. URL http://www.personal.kent.edu/~rmuhamma/GraphTheory/

MyGraphTheory/trees.htm.

[30] POSIX. Threads Extension for Portable Operating Systems, 1994.

[31] Natarajan Raja and Rudrapatna K. Shyamasundar. Actors as a Coordinating Model of Computation.
In Proceedings of the 2nd International Andrei Ershov Memorial Conference on Perspectives of System
Informatics, pages 191–202. Springer-Verlag, 2004. ISBN 3-540-62064-8.

[32] Anthony Skjellum, Ewing Lusk, and William Gropp. Using MPI: Portable Parallel Programming with
the Message Passing Iinterface. MIT Press, 1999.

[33] Wikipedia. Critical section, 2010. URL http://en.wikipedia.org/wiki/Critical_section.

[34] Wikipedia, The Free Encyclopedia. Sieve of Eratosthenes. http://en.wikipedia.org/wiki/Sieve_

of_Eratosthenes. URL http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes.

[35] Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-Oriented Concurrent Program-
ming in ABCL/1. In Conference proceedings on Object-oriented programming systems, languages and
applications, OOPLSA ’86, pages 258–268, New York, NY, USA, 1986. ACM. ISBN 0-89791-204-7. doi:
10.1145/28697.28722. URL http://doi.acm.org/10.1145/28697.28722.

39 of 39

http://dx.doi.org/10.1007/978-3-662-48096-0_33
http://dx.doi.org/10.1007/978-3-662-48096-0_33
http://www.morganclaypool.com/doi/abs/10.2200/S00070ED1V01Y200611CAC002
http://www.morganclaypool.com/doi/abs/10.2200/S00070ED1V01Y200611CAC002
http://java.sun.com/developer/technicalArticles/J2SE/concurrency/
http://java.sun.com/developer/technicalArticles/J2SE/concurrency/
http://www.personal.kent.edu/~rmuhamma/GraphTheory/MyGraphTheory/trees.htm
http://www.personal.kent.edu/~rmuhamma/GraphTheory/MyGraphTheory/trees.htm
http://en.wikipedia.org/wiki/Critical_section
http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
http://doi.acm.org/10.1145/28697.28722

	Mutual Exclusion
	Critical Sections and the ``isolated'' statement
	Object-based Isolation
	Parallel Spanning Tree Example
	Atomic Variables
	Serialized Computation Graph for Isolated Statements

	The Actor Model
	Introduction to Actors
	Ordering of Messages
	Sieve of Eratosthenes
	Integration with Task Parallelism

	Java Concurrency
	Java Threads
	Synchronized Statements and Methods in Java
	Java Locks
	Linearizability of Concurrent Objects

	Java Concurrent Collections
	java.util.concurrent.ConcurrentHashMap
	java.util.concurrent.ConcurrentLinkedQueue
	java.util.concurrent.CopyOnWriteArraySet

