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5 Mutual Exclusion

5.1 Critical Sections and the “isolated” statement

For the programming constructs async, finish, future, get, forall, the following situation was defined
to be a data race error — when two accesses on the same shared location can potentially execute in parallel
such that at least one access is a write. However, there are many cases in practice when two tasks may
legitimately need to perform conflicting accesses to shared locations.

Consider the example shown below in Listing[I] The job of method deleteTwoNodes () in line 14 is to delete
the first two nodes in doubly-linked list L. It does so by calling L.delete () and L.next.delete() in parallel
in lines 16 and 17. Each call to delete() needs to perform the book-keeping operations in lines 6 and 7
in mutual exclusion from the other, so that there’s no chance of statement instances from the two different
calls being interleaved in any way. The term “mutual exclusion” refers to the requirement that lines 6 and
7 are are executed as a single indivisible step by each task, thereby ezcluding the other tasks when one task
is executing those statements.

1| class DoublyLinkedList {

2 DoublyLinkedList prev, next;

3 Coe

4 void delete () {

5 isolated { // start of mutual exclusion region (critical section)
6 if (this.prev != null) this.prev.next = this.next;

7 if (this.next != null) this.next.prev = this.prev

8 } // end of mutual exclusion region (critical section)

9 . . . // additional work to delete node (mutual exclusion not needed)
10 }

11

12| 1

13

14| static void deleteTwoNodes(DoublyLinkedList L) {
15 finish {

16 async L.delete ();

17 async L.next.delete ();
18 }

19| }

Listing 1: Example of two tasks performing conflicting accesses

The predominant approach to ensure mutual exclusion proposed many years ago is to enclose a code region
such as lines 6 and 7 in a critical section [3]. The following definition of critical sections from [I2] captures
the idea:

“In concurrent programming a critical section is a piece of code that accesses a shared resource
(data structure or device) that must not be concurrently accessed by more than one thread of
execution. A critical section will usually terminate in fixed time, and a thread, task or process will
have to wait a fixed time to enter it (aka bounded waiting). Some synchronization mechanism
is required at the entry and exit of the critical section to ensure exclusive use, for example a
semaphore.”

The primary mechanisms available to a Java programmer for implementing the synchronization necessary
for critical sections is the synchronized language construct, and the java.util.concurrent.locks library
package. You will learn about both mechanisms later in the course. Instead, the Habanero Java (HJ)
language offers a simpler construct, isolated, that can be used to directly implement critical sections, as
shown in lines 5-8 of Listing [1]
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Specifically, the HJ construct, isolated (stmtl), guarantees that each instance of (stmt!) will be performed
in mutual exclusion with all other potentially parallel instances of isolated statements (stmt2). Thus, the
use of isolated in line 5 of Listing[I]is sufficient to ensure that the computations in the two calls to delete ()
(lines 16 and 17) can safely be executed in parallel. After each task executes the isolated statement in
lines 6 and 7, it can perform the computation in line 9 in parallel with the other task. Unlike finish,
isolated does not dictate the order in which the two isolated instances should be executed; it just ensures
that they execute in mutual exclusion regardless of the order.

The body of an isolated statement may perform any sequential Java computation including method calls
and exceptions. It is illegal to execute a parallel construct (such as async, finish, get, or forall) within
an isolated statement. If an exception is throw within an isolated statement, S, it can be caught by a
handler within or outside S. If control exits S after an exception, then all updates performed by S before
throwing the exception will be observable after exiting S. isolated statements may be nested, but an inner
isolated statement is essentially a no-op since isolation is guaranteed by the outer statement.

There is a trade-off between making isolated statements too big or too small in scope. If they are too
big, then the parallelism in the program will be limited because interfering isolated statements cannot
be executed in parallel. (Remember Amdahl’s Law?) If they are too small, then they may not provide
the desired program semantics. For example, if the isolated statement in line 5 of Listing [I] is replaced
by two separate isolated statements for lines 6 and 7 of Listing [I], we would lose the invariant that lines 6
and 7 execute as an indivisible operation with respect to other tasks. It is also important to note that no
combination of finish, async, and isolated constructs can create a deadlock cycle among tasks.

5.1.1 Implementations of Isolated Statements

While it is convenient for the programmer to use isolated statements, this convenience imposes major
challenges on the implementation of isolated constructs. The discussion in the previous section highlights
this issue, especially if we consider the fact that the n1.delete() and n2.delete() calls may or may not
interfere depending on where n1 and n2 are located in the linked list.

The Habanero-Java implementation available for COMP 322 takes a simple single-lock approach to im-
plementing isolated statements. You will learn more about locks later in the class. The idea behind a
single-lock approach is to treat each entry of an isolated statement as an acquire() operation on the lock,
and each exit of an isolated statement as a release() operation on the lock. Though correct, this approach
essentially implements isolated statements as critical sections.

An alternate approach for implementing isolated statements being explored by the research community
is Transactional Memory (TM) [9]. In Software Transactional Memory (STM), a combination of compiler
and runtime techniques is used to optimistically execute transactions (instances of isolated statements)
in parallel while checking for possible interference. If an interference is detected, one of the transactions is
“rolled back” and restarted. Given the large amount of book-keeping necessary for logging read and write
operations to check for interference, it is widely believed that software-only approaches to TM incur too much
overhead to be useful in practice. Instead, there have been multiple proposals for Hardware Transactional
Memory (HTM) support to assist with this book-keeping. As yet, no computer with HTM support is widely
available, but a few hardware prototypes have begun to show promise in this direction e.g., [2].

When comparing implementations of isolated statements, the three cases to consider in practice can be
qualitatively described as follows:

1. Low contention: In this case, isolated statements are executed infrequently, and a single-lock approach
as in HJ is often the best solution. Other solutions, such as TM, object-based isolation (Section ,
and atomic variables (Section , incur additional overhead compared to the single-lock approach
because of their book-keeping and checks necessary but there is no visible benefit from that overhead
because contention is low.

2. Moderate contention: In this case, the serialization of all isolated statements in a single-lock approach
limits the performance of the parallel program due to Amdahl’s Law, but a finer-grained approach
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that only serializes interfering isolated statements results in good scalability. This is the case that
motivates the use of approaches such as TM, object-based isolation, and atomic variables, since the
the benefit that they offer from reduced serialization outweighs the extra overhead that they incur.

3. High contention: In this case, there are phases in the program when interfering isolated statements
on a single object (often referred to as a “hot spot” object) dominate the program execution time.
In such situations, approaches such as TM and atomic variables are of little help since they cannot
eliminate the interference inherent in accessing a single object. The best approach in such cases is to
find an alternative approach to isolated e.g., to use a parallel Array Sum algorithm instead of an
isolated statement to compute the sum of values generated by different tasks.

5.2 Object-based Isolation

In this section, we introduce the basic functionality of object-based isolation [§]. As mentioned earlier, the
focus of object-based isolation is on mutual exclusion rather than strong atomicity ¢.e., mutual exclusion is
only guaranteed between instances of isolated statements, unlike strong atomicity where a mutual exclusion
guarantees may also exist between atomic and non-atomic statements. Two given isolated statements
execute in mutual exclusion if the intersection of their object list is non-empty. Further, object-based
isolated statements can be combined with global isolated statements that enforce mutual exclusion on
all objects.

We first review the existing global isolated statement in HJ [7]. The HJ construct, isolated (stmtl),
guarantees that each instance of (stmt1) will be performed in mutual exclusion with all other potentially
parallel interfering instances of isolated statements (stmt2). Two instances of isolated statements, (stmt)
and (stmt2), are said to interfere with each other if both access the same shared location, such that at least
one of the accesses is a write.

The current HJ implementation takes a simple single-lock approach to implementing isolated statements,
by treating each entry of an isolated statement as an acquire() operation on the lock, and each exit of an
isolated statement as a release() operation on the lock. Though correct, this approach essentially imple-
ments isolated statements as critical sections, thereby serializing interfering and non-interfering isolated
statement instances. We refer to this approach as global mutual exclusion.

The motivation for object-based isolation is that there are many cases when the programmer knows the set
of objects that will be accessed in the body of the isolated statement. In that case, they can use a statement
of the form, isolated(objy, obji, ...) {stmtl), to specify the set of objects involved. (The order of objects is
not significant.) We refer to this approach as partial mutual exclusion. In this case, two isolated statements
are only guaranteed to execute in mutual execution if they have a non-empty intersection in their object
sets. For convenience, the standard isolated statement in HJ is assumed to be equivalent to isolated (*)
i.e., an object-based isolated statement on the universal set of objects.

Figure [I] contains an example that uses global mutual exclusion to implement the insert function in the
SortList benchmark. Lines 14 to 21 contain the critical section that performs node insertion and executes
in mutual exclusion with any other critical sections that operate on objects prev and curr.

Figure [2] shows how the example presented in Figure can be rewritten to use object-based isolated
statements instead. In this case, the programmer explicitly identifies objects prev and curr as being involved
in the mutual exclusion. As discussed in Section lock-based implementations of object-based isolation
rely on an ability to order the objects. This ordering is in turn used to guarantee an absence of deadlock in
the implementation of object-based isolation.

As mentioned earlier, imposing a total order on the isolated objects is the key mechanism to avoid deadlocks.
This can be done easily for objects in a single isolated list, but nested isolated constructs can pose a challenge.
A sufficient condition for deadlock avoidance with nested isolation is to prohibit an inner isolated statement
from including an object that was not already acquired by an outer isolated statement. (Note that this
condition permits a task to re-acquire the same object, as is done with reentrant locks.) Figure [3| contains
an example to illustrate this rule.
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public boolean insert(final int v) {
while (true) {
INode curr, prev = null;
for (curr = first; curr != null;
curr = curr.getNext ()) {
final int val = curr.getValue ();
// v already exists
if (val = v) return false;
else if (val > v) break;
prev = curr;

}

boolean set = false;
isolated {
if (validate(prev, curr)) {
final INode neo = new INode();
neo.setValue(v);
link (prev, neo, curr);
set = true;
}
}

if (set) return true;

Figure 1: SortList Insert Operation with Global Isolation
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public boolean insert(final int v) {
while (true) {

INode curr, prev = null;
for (curr = first; curr != null;
curr = curr.getNext ()) {
final int val = curr.getValue ();
if (val = v) return false; // v already exists
else if (val > v) break;
prev = curr;
}
boolean set = false;
if (prev != null & & curr != null) {

isolated (prev, curr) {
if (validate(prev, curr)) {
final INode neo = new INode();
neo.setValue(v);
link (prev, neo, curr);
set = true;

Figure 2: SortList Insert Operation with Partial Mutual Exclusion

isolated (objl, obj2) { | isolated {
isolated (obj3) { isolated (objl, obj2) {

S; S;

(a) (b)

Figure 3: Simple cases for nested isolation.
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In Figure [3| (a), if obj3 is neither an alias of obj1 nor of obj2, then the statement S should not be permitted
to execute and a runtime exception is thrown at that point. This is because the inner isolated region tries
to acquire a new object that was not included in the outer isolated region, thereby opening the possibility
of a deadlock. Figure3|(b) shows a legal example for nested isolation. The outer isolated region is a global
mutual exclusion construct (i.e. it acquires all objects), which makes it is legal to acquire any object in the
inner isolated region. To ensure the correctness of nested isolation, the implementation relies on runtime
checking as compile-time checking is undecidable in general.

Finally, a null object reference in list for an object-based isolated statement is essentially no-op (unlike
the Java synchronized statement, which throws a NullPointerException in that case). Consider the following
example:

isolated (objl, obj2) S;

| |

If obj1 is null, then an implementation of the isolated statement only needs to acquire obj2, thereby
making the previous statement is equivalent to the following:

| |
isolated (obj2) S;

| |

If both obj1 and obj2 are null, then the isolated statement degenerates to a no-op and no isolation is
imposed on S.

5.3 Parallel Spanning Tree Example

In this section, we discuss a more complicated use of isolated statements in a program written to find a
spanning tree of an undirected graph. An undirected graph G = (V, E) consists of a finite set of vertices, V',
and a set of unordered edges, E. An edge, {u,v} connects vertices u # v, but the order is not significant.
This is unlike directed graphs, such as a computation graph, where the direction of the edge matters. A
common representation for undirected graphs is the adjacency list. For each vertex u in the graph, an array
neighbors can be used to store the set of vertices v # u such that there is an edge connecting vertices u
and v. Figure {4| contains a simple example of an undirected graph.

A path from vertex a to vertex b in graph G = (V, E) is a sequence (vg, v1, V2, . - . , V) of vertices where vy = a,
v = b, and {v;,v;41} € Efori=0,1,...,k—1. A graph is connected if each pair of vertices is connected by
at least one path. A cycle (or circuit) is a path that starts and ends with the same vertex. A tree is a special
kind of undirected graph that is connected and contains no cycles. A tree always contains |V| — 1 edges.
A rooted tree has a designated vertex that is called the root. A rooted tree can be represented compactly
by a parent field in each non-root vertex such that there is a tree edge {u,v} if and only if u.parent = v
or v.parent = u. A spanning tree of a connected undirected graph G is a tree containing all the vertices of
G, and a subset of G’s edges. A graph may have multiple spanning trees. Figure [5| shows three possible
spanning trees for the graph in Figure

Spanning trees have multiple applications in areas as diverse as telephone networks and transportation, since
a spanning tree contains the minimum number of edges (|V|—1) to ensure that the vertices in a graph remain
connected. Removing an edge from a spanning tree with cause the resulting graph to become disconnected.
If each edge e = {u,v} in the input graph is assigned a weight (e.g., based on the distance or cost of the
connection between the two vertices), then a minimum spanning tree is a spanning tree with the smallest
total cost, when adding the weights of edges in the tree. The problem of finding the minimum spanning
tree has received much attention in Computer Science. In this section, we will study the simpler problem of
finding any spanning tree of an input graph.
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Figure 4: Example undirected graph (source [I1])
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Figure 5: Three spanning trees for undirected graph in Figure @ (source [11])
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Listing [2 shows the sketch of a Java class V that implements a sequential program to compute the spanning
tree of an undirected graph. Each vertex in the input graph is created as an instance of class V, and the its
neighbors array contains its adjacency list. The algorithm starts by setting root.parent = root in line 17.
Even though the root vertex does not have a defined parent, this convention simplifies the implementation
of the tryLabeling() method, as we will see. Line 18 invokes the recursive method, compute(), on root.

The body of method compute() is defined in lines 9 — 13. It iterates through each vertex (named child)
in the neighbors list of the current (this) vertex, and attempts to become the parent of child by calling
child.tryLabeling(). Consider an example where the this vertex is a and the child vertex is b in line 11.
Line 5 in method tryLabeling() will then check if b’s parent is null. If so, it sets b.parent to equal a and
returns true. Otherwise, the call to tryLabeling() returns false. Back in line 11, method compute ()
will recursively call itself on child a if tryLabeling() returns true, thereby ensuring that compute() is
called exactly once for each vertex. When all recursive calls have completed, the output spanning tree is
represented by the parent fields.

1| class V {

2 V [] neighbors; // adjacency list for input graph
3 V parent; // output value of parent in spanning tree
4 boolean tryLabeling(V n) {

5 if (parent = null) parent=n;

6 return parent — n;

7 } // tryLabeling

8 void compute () {

9 for (int i=0; i<neighbors.length; i++4) {

10 V child = neighbors|[i];

11 if (child.tryLabeling(this))

12 child .compute (); //escaping async

13 }

14 } // compute
15| } // class V

160 . . .

17| root.parent = root; // Use self—cycle to identify root
18| root.compute ();

19

Listing 2: Sequential Algorithm for computing the Spanning Tree of an undirected graph

Listing [3| shows a parallel version of the spanning tree program in Listing The only changes are the
addition of isolated in line 5, the addition of async in line 12, and the addition of finish in line 18. The
addition of these keywords lead to a parallel program which computes a valid spanning tree of the graph, but
without preserving the left-to-right order when traversing neighbors in the original sequential version. This
is a nondeterministic algorithm since different executions may yield different spanning trees, all of which are
valid solutions.

1| class V. {

2 V [] neighbors; // adjacency list for input graph
3 V parent; // output value of parent in spanning tree
4 boolean tryLabeling (V n) {

5 isolated if (parent =— null) parent=n;

6 return parent — n;

7 } // tryLabeling

8 void compute () {

9 for (int 1=0; i<neighbors.length; i++) {

10 V child = neighbors[i];

11 if (child.tryLabeling(this))

12 async child .compute (); //escaping async
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13 }
14 } // compute
15| } // class V

16

17| root.parent = root; // Use self—cycle to identify root
18| finish root.compute();

19

Listing 3: Parallel Spanning Tree of an undirected graph

There are some other points worth observing in this example. Method compute () in lines 8-14 contains an
async but no finish statement. In such a case, the async in line 12 is called an escaping async, because its
parent task’s method can return before the async has completed. Instead, a finish is included in line 18
to ensure that all async’s terminate before the program proceeds to line 19. The isolated statement in
line 5 is necessary because multiple neighbors of a vertex v2 may compete to be its parent. The winning
vertex v1 is the one whose async finds v2.parent == null, in which case it sets v2.parent = vi1. All other
neighbors will then fail to become the parent of v2 since v2.parent == null will no longer be true.

5.4 Atomic Variables
5.4.1 AtomicInteger and AtomicIntegerArray

The java.util.concurrent package [10,[4] (also referred to as j.u.c) was introduced over five years ago as
part of Java 5.0 to offer a standard set of library utilities for writing parallel programs in Java. You will learn
more details of the j.u.c. package later in the class, when you graduate from parallel programming in HJ
to parallel programming in pure Java. The use of many j.u.c. features by the programmer is prohibited
in HJ, since they can easily violate HJ’s properties such as deadlock freedonﬂ

However, there are two groups of utilities in j.u.c. that can be freely used in HJ code for performance and
convenience — atomic variables and concurrent collections [4]. This section focuses on the former, which is
embodied in the java.util.concurrent.atomic sub-package [Il, [10]. Specifically, the j.u.c.atomic sub-
package provides library calls that can be used by HJ programmers as a more efficient substitute for certain
patterns of isolated statements. It does so by encapsulating a single variable in an object, and providing
certain read, write and read-modify-write operations that are guaranteed to be performed “atomically” on
the object i.e., as though they occurred in an isolated statement. The source of efficiency arises from teh
fact that many platforms offer hardware support for executing these read-modify-write operations atomically.

Thus, the basic idea behind atomic variables is to implement common access patterns occurring in isolated
statements as predefined methods that can be invoked by the programmer, with efficient implementations
that avoid the use of locks. Atomic variables provided a restricted solution to scalable implementations of
isolated. If an isolated statement matches an available atomic pattern, then it can be implemented by
using an atomic variable; otherwise, the default implementation of isolated or object-based isolation has
to be used instead.

The operations of interest for two j.u.c. atomic classes, AtomicInteger and AtomicIntegerArray, are
summarized in Table|l] Let us start with AtomicInteger. It has two constructors, AtomicInteger () (with
a default initial value value of 0) and AtomicInteger (init) (with a specified initial value). A single instance
of AtomicInteger encapsulates an object with a single integer field, val, that can only be read or written
using predefined methods, as shown in Table [I] Each such method call is guaranteed to execute in isolation
with other methods invoked on the same object. To use these classes in HJ, you will need to include the
following statement at the start of your program, import java.util.concurrent.atomic.*.

Table [I] shows equivalent HJ isolated statements for AtomicInteger methods get (), set (), getAndSet (),
addAndGet (), getAndAdd (), and compareAndSet (). While the functionality of your HJ program will remain
unchanged if you use AtomicInteger methods as in column 2 or isolated statements as in column 3, the per-

1The HJ implementation uses j.u.c. features to implement parallel constructs that you have already learned, such as async,
finish, future and phaser, but this usage is not visible to the HJ programmer.
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j.u.c.atomic Class
and Constructors

j.u.c.atomic Methods

Equivalent HJ object-based isolated statements

(length) // init = 0

AtomicIntegerArray
(arr)

AtomicInteger int j = v.get(); int j; isolated(v) j = v.val;

v.set(newVal); isolated(v) v.val = newVal;
AtomicInteger() int j = v.getAndSet(newVal); | int j; isolated(v) {j = v.val; v.val = newVal; }

// init =0 int ] = v.addAndGet(delta); isolated(v) { v.val += delta; j = v.val; }

int j = v.getAndAdd(delta); isolated(v) {j = v.val; v.val += delta; }

AtomicInteger(init) boolean b = boolean b;
v.compareAndSet isolated(v)
(expect,update); if (v.val==expect) {v.val=update; b=true;}
else b = false;

AtomicIntegerArray || int j = v.get(i); int j; isolated(v) j = v.arr[i];

v.set(i,newVal); isolated(v) v.arr[i] = newVal,
AtomicIntegerArray || int j = v.getAndSet(i,newVal); | int j; isolated(v) { j = v.arr[i]; v.arr[i| = newVal; }

int j = v.addAndGet(i,delta);

isolated(v) { v.arr[i] += delta; j = v.arr[i]; }

int j = v.getAndAdd(i,delta);

isolated(v) {j = v.arr[i]; v.arr[i] += delta; }

boolean b =
v.compareAndSet
(i,expect,update);

boolean b;

isolated(v)
if (v.arr[ij==expect) {v.arr[ij=update; b=true;}
else b = false;

Table 1: Methods in java.util.concurrent atomic classes AtomicInteger and AtomicIntegerArray and
their equivalent HJ object-based isolated statements. Variable v refers to a j.u.c.atomic object in column 2
and to an equivalent non-atomic object in column 3. val refers to a field of type int, and arr refers to a

field of type int[].

1) Rank computation:
rank = new ..

.; rank.count = O;

isolated(rank) r = ++rank.count;

AtomicInteger rank = new AtomicInteger();

r = rank.incrementAndGet();

2) Work assignment:
rem = new ...

if (r>0) .

; rem.count = n;

isolated(rem) r = rem.count--; r = rem.getAndDecrement () ;
if (r>0)

AtomicInteger rem = new AtomicInteger(n);

3) Counting semaphore:
sem = new ...; sem.count = 0;
isolated(sem) r = ++sem.count;

isolated(sem) r = --sem.count;

isolated(sem) s = sem.count; isZero = (s==0);

AtomicInteger sem = new AtomicInteger();

sem.incrementAndGet () ;

r
r = sem.decrementAndGet();

sem.get(); isZero = (s==0);

n -
1]

4) Sum reduction:

sum = new ...; sum.val = 0;

isolated(sum) sum.val += x;

AtomicInteger sum = new AtomicInteger();

sum.addAndGet (x) ;

Table 2: Examples of common isolated statement idioms and their equivalent AtomicInteger implemen-

tations
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formance of your program in the moderate contention case will usually be superior when using AtomicInteger
methods for the reasons discussed in Section The complete list of AtomicInteger methods can
be found in [I]. The methods omitted from Table [I| include decrementAndGet(), getAndDecrement (),
incrementAndGet (), and getAndIncrement () (since they are equivalent to the add methods in Table
with delta=1 or delta=-1), doubleValue(), floatValue() and intValue() (since their functionality can
be obtained by simple cast operations), and weakCompareAndSet () (since it is identical to compareAndSet ()
in HJ, but differs from compareAndSet () in some fine points of the Java Memory Model that are not ob-
served on current hardware). While the isolated patterns supported by the AtomicInteger methods in
Table [[|may appear to be limited, they capture idioms that occur frequently in parallel programs as shown in
Table 2| In addition, variants of the addAndGet () and getAndAdd () methods have been studied extensively
for the last 30 years [6, [B] as primitives for building scalable parallel algorithms.

Table [I] also shows constructors and methods for the AtomicIntegerArray class. The main advantage
of using an instance of AtomicIntegerArray instead of creating an array of AtomicInteger’s is that an
AtomicIntegerArray instance occupies less space since its book-keeping overhead is amortized over an
entire integer array, whereas a AtomicInteger[] array is essentially an array of objects. An element access
in AtomicInteger[] also incurs an extra indirection relative to an element access in AtomicIntegerArray.

The j.u.c.atomic sub-package also includes AtomicLong, AtomicLongArray, and AtomicBoolean classes,
with methods that are easy to understand once you know the methods available in AtomicInteger and
AtomicIntegerArray.

5.4.2 AtomicReference

It is useful to perform atomic operations on object references, in addition to atomic operations on the primi-
tive data types outlined in Section Table [3| summarizes the operations available for AtomicReference
and AtomicReferenceArray classes in the j.u.c.atomic sub-package. The compareAndSet () method can
be especially useful in practice. As an example, consider the code in Listing [4] with an object-based isolated
statement used in the Parallel Spanning Tree example.

1| class V {

2 V [] neighbors; // adjacency list for input graph

3 V parent; // output value of parent in spanning tree

4 boolean tryLabeling(V n) {

5 boolean retVal;

6 isolated (this) { if (parent = null) parent=n; retVal = (parent = n);
7 return retVal;

8 } // tryLabeling

9

0

10| } k/.(:iass A%

Listing 4: Use of isolated in Parallel Spanning Tree example

class V {
V [] neighbors; // adjacency list for input graph
AtomicReference parent; // output value of parent in spanning tree

boolean tryLabeling (V n) {
return parent.compareAndSet(null, n);
} // tryLabeling

O O T W~

} //class \%

Listing 5: Use of compareAndSet () as a replacement for isolated in Listing

The isolated statement in line 5 of Listing [4] can be replaced by a compareAndSet () method if parent
is stored as an AtomicReference, as shown above in Listing [5| There are additional j.u.c.atomic classes
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j.u.c.atomic Class
and Constructors

j.u.c.atomic Methods

Equivalent HJ isolated statements

AtomicReference

AtomicReference()
// init = null

AtomicReference(init)

Object o = v.get();

Object o; isolated o = v.ref;

v.set(newRef);

isolated v.ref = newRef;

Object o =
v.getAndSet(newRef);

Object o;
isolated { o = v.ref; v.iref = newRef; }

boolean b =
v.compareAndSet
(expect,update);

boolean b;

isolated
if (v.ref==expect) {v.ref=update; b=true;}
else b = false;

AtomicReferenceArray

AtomicReferenceArray
(length) // init = null

AtomicIntegerArray
(arr)

Object o = v.get(i);

Object o; isolated o = v.arrli];

v.set(i,newRef);

isolated v.arr[i] = newRef;

Object 0 =
v.get AndSet(i,newRef);

Object o;
isolated { o = v.arr[i]; v.arr[i] = newRef; }

boolean b =
v.compareAndSet
(i,expect,update);

boolean b;
isolated
if (v.arr[ij==expect) {v.arr[ij=update; b=true;}

else b = false;

Table 3: Methods in java.util.concurrent atomic classes AtomicReference and AtomicReferenceArray
and their equivalent HJ object-based isolated statements. Variable v refers to a j.u.c.atomic object in
column 2 and to an equivalent non-atomic object in column 3. ref refers to a field of type Object, and arr
refers to a field of type Object[].

available called AtomicMarkableReference and AtomicStampedReference that support atomic manipula-
tion of a reference+boolean pair or a reference+int pair respectively. Unfortunately, there is no pre-defined
method that can support atomic manipulation of multiple objects as in the isolated statement in Listing

5.5 Read-Write Modes in Object-based Isolation
TO BE COMPLETED
5.6 Serialized Computation Graph for Isolated Statements

How can the Computation Graph (CG) structure be extended to model isolated statements? We start by
modeling each instance of an isolated statement as a distinct step (node) in the CG. This is permissible
since the execution of an isolated statement is purely sequential with no internal continuation points.
Next, we reason about the order in which interfering isolated statements are executed. This is complicated
because the order may vary from execution to execution e.g., the isolated statement instance invoked by
the async in line 16 of Listing [I| may execute before the isolated statement in line 17 in one execution,
and vice versa in another execution.

To solve this dilemma, we introduce a family of Serialized Computation Graphs (SCG’s) that can be obtained
when executing a program for a given input. Each SCG consists of a CG with additional serialization edges.
Consider a CG being constructed on-the-fly as a parallel program executes. Each time an isolated step,
S’, is executed, we add a serialization edge from S to S’ for each isolated step, 9, that has already executed.
For simplicity, we omit serialization edges when the source and destination steps belong to the same task,
since they will always be redundant.

Each SCG represents a set of executions in which all interfering isolated statements execute in the same
order. Different SCG’s are used to reason about different orders of execution of interfering isolated state-
ments. We can use SCG’s to reason about properties of parallel programs that you have already studied
with respect to a specific CG. For example, the critical path length (CPL) of the execution of a program
with isolated statements can be obtained by computing the C'PL of the corresponding SCG.
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Consider the computation graph in Figure |§| (ignoring the red serialization edges) and assume that nodes
v10, v1l, v16 all consist of interfering isolated steps as shown in the bottom right of the figure. There
are three possible orderings for these nodes, when taking continue, spawn and join edges into account:
v16 = v10 — v1l, v10 — v16 — vll and v10 — v1l — v16. Each order leads to a different SCG, when
serialization edges are added. The red edges in Figure [f] show serialization edges added when the isolated
steps execute in the sequence, v10 — v16 — v1l. These edges increase the critical path length of the SCG
from 17 nodes (without serialization edges) to 18 nodes (with serialization edges). Alternate SCG’s are also
possible with serialization edges v10 — v11 — v16 and v16 — v10 — v11 which result in a critical path
length of 17 nodes.

t% Qe

\

| Gi@@\@@@

-

|_* » ‘T4 ‘. |j
—»  Continue edge ——l  Spawn edge ------ > Join edge
=== Serialization edge v10: isolated { x ++;y =

y=10;}
v11: isolated { x++; y=11;}
v16: isolated { x++ y=16;}

Figure 6: Serialized Computation Graph with Serialization Edges

5.6.1 Data Races and the Isolated Statement

The following definition of data races studied earlier can also be directly applied to an SCG:

“Formally, a data race occurs on location L in a program execution with computation graph CG
if there exist steps S; and S; in C'G such that:

1. S1 does not depend on S3 and Sy does not depend on Sy i.e., there is no path of dependence
edges from S to Sy or from Sy to S in CG, and

2. both S; and S3 read or write L, and at least one of the accesses is a write.”

By this definition, there is no data race between (say) node v10 and v16 in Figure @ since the insertion of
serialization edges ensures that there cannot be a data race between any two interfering isolated statement
instances. The absence of a data race appears reasonable for variable x in Figure |§| (since all executions
will result in x++ being performed exactly three times in isolation), but what about variable y? The final
value of y depends on the order in which the isolated statements are executed. While this appears to be
a race of some sort, it is not considered to be a data race according to the above definition. In general, data
races are considered more harmful than other forms of races in parallel programs, because the semantics of
data races depends on intricate details of the underlying memory consistency model.
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As another example, consider the forall loop in Listing[f] The read and write accesses to rank.count in
line 3 result in data races between all pairs of forall iterations.

1| rank.count = 0; // rank object contains an int field , count

2| forall (point[i] : [0:m—1]) {

3 int r = rank.count+-+;

4 StringArray[i] = Hello , World from task with rank = + r;
5

}

Listing 6: Example of a forall loop with a data race error

Earlier, you learned how finish statements can be inserted to fix data race errors. For this example, an
isolated statement needs to be used instead, as shown in line 4 of Listing

1| rank.count = 0; // rank object contains an int field , count

2| forall (point[i] : [0:m—1]) {

3 int r;

4 isolated { r = rank.count++; }

5 StringArray[i] = Hello , World from task with rank = + r;
6] }

Listing 7: Using an isolated statement to fix the data race error in Listing

Note that the program in Listing [7]is nondeterministic because different executions with the same input can
result in different outputs (related to which iteration i gets assigned which rank r). It is informative to
review the following property studied earlier, in light of isolated constructs:

Determinism property: if a parallel program with async, finish, forall, future and get oper-
ations can never have a data race, then it must be deterministic with respect to its inputs.

This Determinism property does not hold in general for data-race-free programs that include isolated
statements, as seen in the examples in Figure[6and in Listing[7] Thus, the distinction between deterministic
and data-race-free programs needs to be understood with more care, when isolated statements are also
under consideration.

Finally, we note that the isolated construct supports weak isolation [9]. With weak isolation, any mem-
ory accesses performed outside isolated constructs are not checked for interference with accesses within
isolated constructs. Thus, there is the possibility of the “indivisibility” associated with an isolated state-
ment being broken due to data races with non-isolated accesses, such as (say) a non-isolated x++ operation
in node v17 in Figure [6}
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