
 1

Generative (Non-structural)
Recursion

Corky Cartwright
Department of Computer Science

Rice University

COMP 211, Spring 2010 2

The Recipe Until Now
• Data analysis and design including generic

templates
• For each function in the design (visible interface)

• Contract, purpose
• Examples (stated as tests)
• Template Instantiation

• Precisely follows the structure of the data processed by the
function

• Using this template, we can do "almost everything”

• Testing

COMP 211, Spring 2010 3

Structural Recursion
• Is the best problem-solving strategy

• For the vast majority of functions on recursive
data.

• Yields satisfactory efficiency in most cases.
• Cannot, in principle, compute all

computable functions
• Is ill-suited to an important class of

problems that technically can be solved
using structural recursion but can be solved
more cleanly and efficiently using non-
structural methods.

COMP 211, Spring 2010 4

Non-structural Functional
Programs

• Best explained by presenting some
examples before discussing the general
template.

Problem: efficiently sort a list of numbers
Good solutions: merge-sort, quick-sort

COMP 211, Spring 2010 5

Merge Sort
• Not going to present the actual program

because it is an exercise in HW 4.
• Idea:

• Base case: list of length 0 or 1
• Inductive case:

• split the list into two non-empty (almost)
equal parts

• sort each part
• merge the two results

Why non-structural?

COMP 211, Spring 2010 6

Quick Sort
• Invented by C.A.R. ("Tony") Hoare
• Functional version is derived from the imperative

(destructive) algorithm; less efficient but still works
very well

• Idea:
• Base case: list of length 0 or 1
• Inductive case:

• partition the list into three parts:
• the singleton list containing first,
• the list of all items <= first, and
• the list of all items > first

• sort the the lists of lesser and greater items
• return (sorted lesser) || (list first) || (sorted greater) where || means list

concatenation (append)

COMP 211, Spring 2010 7

 Quicksort Breaks Structural Template

(define (qsort alon)
 (cond
 [(empty? alon) empty]
 [else
 (local ((define pivot (first alon))
 (define other (rest alon)))
 (append
 (qsort [filter (lambda (x) (<= x pivot)) other])
 (list pivot)
 (qsort [filter (lambda (x) (> x pivot)) other])))]))

qsort terminates on all inputs. Why?

COMP 211, Spring 2010 8

Not so quick sort
(define (qsort alon)
 (cond
 [(empty? alon) empty]
 [else
 (local ((define pivot (first alon))
 (define other alon))
 (append
 (qsort [filter (lambda (x) (<= x pivot)) other])
 (list pivot)
 (qsort [filter (lambda (x) (> x pivot)) other])))]))

This variant may not terminate. Why? Is
 [filter (lambda (x) (<= x pivot)) other]

necessarily smaller than alon?

COMP 211, Spring 2010 9

A More General Recipe

• Data analysis and design
• Contract, purpose, header (optional)
• Examples
• Template Instantiation

• More flexible than before (non-structural)
• Explicit termination argument
• Testing

COMP 211, Spring 2010 10

Generative Template

(define (gr-fun problem) ;; problem is mutliple parameters
 (cond
 [(trivially-solvable? problem)
 (compute-solution problem)]
 [else
 (combine-solutions
 ... problem ...
 (gr-fun (gen-subproblem-1 problem))
 ...
 (gr-fun (gen-subproblem-n problem)))]))

where (gen-subproblem-1 problem), ..., (gen-subproblem-1 problem)are
smaller problems of the same form as problem.

COMP 211, Spring 2010 11

The Easy Cases
Generalized Structural Recursion

Generalized structural recursion where an input argument x is destructured but
the subproblems are not immediate components of the x. Example: a function
that takes a lon and sums consecutive pairs of elements.

; add-pairs: lon -> lon
(define (add-pairs lon)
 (cond [(empty? lon) empty]
 [(empty? (rest lon)) lon]
 [else (cons (+ (first lon) (first (rest lon)))
 (add-pairs (rest (rest lon))))]))

•

This generalized form of structural recursion does not conform to the structural
template for lon. It corresponds to strong mathematical induction (also called
“course of values” induction) and obviously terminates. The naïve definition of
fib is another example.

COMP 211, Spring 2010 12

The Easy Cases

Other Forms of Generalized Structural Recursion
• Structural recursion on a tuple such as a pair of numbers.

In the standard formalization of arithmetic, corresponds to
multiple induction. Some deep theorems in proof theory
focus on this issue.
Example: merge as done in the book.

• Recursion on substructure where the specific substructure
is computed by an auxiliary function.
Example: parse function from next lecture.

COMP 211, Spring 2010 13

Easy Cases cont.

Abstract Structural Recursion

Generative recursion may be structural at an abstract level (if we use
a different data representation). Example: the upfrom help function
from lab 1.

; upfrom: nat nat -> list-of nat
(define (upfrom m n)
 (cond [(> m n) empty]
 [else (cons m (upfrom (add1 m) n))]))

What does the pair (m,n) represent? An interval on the number
line. Is there another representation we could choose that would
make this program structural in the narrow sense used in the book.

COMP 211, Spring 2010 14

Structural Equivalent

This program even has a structural analog
when we change to data representation. Let
(m,k) represent the interval from m to m+k-1,
i.e., the set {m, m+1, ..., m+k-1}, i.e. the
interval starting at m of size k. Let us call the
function using the revised data representation
Upfrom: nat nat -> list-of nat. Then we
assert that
 (upfrom m m+k-1) = (Upfrom m k)

COMP 211, Spring 2010 15

Easy Cases cont.

Definition of Upfrom

; Upfrom: nat nat -> list-of nat
(define (Upfrom m k)
 (cond
 [(zero? k) empty]
 [(positive? k)
 (cons m (Upfrom (add1 m) (sub1 k)))]))

This program is structurally recursive and has exactly
the same recursive calling structure as upfrom.
Should we use it instead of upfrom in lab? Book
classifies upfrom as advanced form of structural
recursion.

COMP 211, Spring 2010 16

Bonafide generative recurision

• In many cases, generative recursion cannot be
interpreted as generalized structural recursion or
structural recursion over a different or more abstract
representation of the data.

• In this case, we need to ensure that all recursive
calls reduce the “size” of some problem metric (a
function of the argument values). Often this metric
is the “size” (expressed as a nat) of the problem
inputs. Some common metrics are the length of a
list, the depth of a tree, etc.

COMP 211, Spring 2010 17

Sample termination argument
• Quicksort terminates because each

recursive call (qsort alon) reduces the
metric (length alon). In particular, both
[filter (lambda (x) (<= x pivot)) other] and
[filter (lambda (x) (> x pivot)) other]

 are sublists of other which is shorter than alon
• Without such an argument, a non-structural

program must be considered incomplete.

COMP 211, Spring 2010 18

General framework for proving
termination

Devise a metric (a size function) for the problem
inputs with values of some familiar structural type
(often nat) and show that each recursive call
involves smaller problem inputs than the original
one.
In pathological cases, this ordering may require the
use of lexicographic ordering on n-tuples (or even
unbounded sequences like alphabetic words) of data
values. These pathologies are rare in practice. Not a
single occurrence in DrJava code base.

COMP 211, Spring 2010 19

Why Generative Recursion?
• What if we can choose between

• a structural solution and
• a generative solution?

• Often, the second is much faster
• Sorting
• Simpler example from book: greatest-common-divisor

(GCD) gcd(6,9)=3, gcd (99, 18) = 9, etc.
structural version so brain-damaged I could not follow
the narrative. I had to infer what the code did.
Rant: local functions in book often have no contracts!

• Even better example: searching an ordered list (but
not efficient in functional model if deletions are
necessary!)

COMP 211, Spring 2010 20

Are all data types structural?
• Surprisingly delicate question.
• Book says no.
• Walid Taha said no in Comp 210.
• My answer: it depends on how you define the meanings of types. If we use

abstract mathematical meanings (where functions are really interpreted as
functions) then the answer is no. But if we use the a pedestrian semantics
that uses some notion of syntax/code (which is finite!) to represent
functions (and other similarly infinite data objects) the answer is yes.

• Which answer do I prefer? As a programmer: “no”; as a language
implementor: “yes”. Answer relevant to this class “no”.

• Conceptually I like to think of program data values as abstract
mathematical objects. I don't want to think about functions as finite
syntactic objects and the correct syntactic representations are more
complex than you might think. Moreover, I cannot think of any case where
some important property of a program can be established using a
pedestrian semantics for functions but not with a mathematical semantics.

• In reasoning about programs, the mathematical point of view is simpler
and just as powerful.

COMP 211, Spring 2010 21

Some Algorithm Families
• Sorting and Searching
• Mathematical iteration: bisection,

Newton's method.
• Backtracking (traversing a maze, 8

queens)
• Dynamic Programming
• Generally the structural algorithms are so

trivial that they typically aren't discussed
as algorithms. Nothing interesting to say.

COMP 211, Spring 2010 22

Termination Arguments

Binary search

If we start with an interval S units wide, then
we only need a limited number of steps
to reach an interval R units wide. In particular,
the intervals will proceed as S, S/2, S/4,
..., and will reach size smaller than R in
log2 (R/S) steps. This argument relies on major
handwaving. Why? What is the midpoint between
n and n+1?

COMP 211, Spring 2010 23

The Tradeoff (if we can choose)
• How do we chose between

• a structural solution and
• a generative solution?

• Speed vs. clarity (brute force) in some cases
• In other cases, there is no credible structural

algorithm. The structural algorithm may be
ridiculously inefficient.

• Chapter 26 has a good example
• Greatest-common-divisor (GCD)
• gcd(6,9)=3, gcd (99, 18) = 9, etc.
• The structural algorithm is worse than crude.

COMP 211, Spring 2010 24

For Next Class
• Work on HW 4 due next Friday
• Continue Reading:

• Ch 25-28: Non-structural recursion.
• Start on next homework assignment

• (mergesort lon) (Problem 26.1.2 but top-
down rather than bottom-up version of
mergesort)

	Generative (Non-structural) Recursion
	The Recipe Until Now
	Structural Recursion
	Non-structural Functional Programs
	Merge Sort
	Quick Sort
	Quicksort Breaks Structural Template
	Not so quick sort
	A More General Recipe
	Generative Template
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Sample termination argument
	General framework for proving termination
	Why Generative Recursion?
	Are all data types structural?
	Some Algorithm Families
	Termination Argument
	The Tradeoff (if we can chose)
	For Next Class

