
Comp 211, Spring 2011 1

Accumulators and Tail Calls

Corky Cartwright

Department of Computer
Science

Rice University

Comp 211, Spring 2011 2

Plan for today

Provide a more precise technical motivation for
accumulator concepts

•Recognizing the need for accumulators

•Avoiding non-tail recursive calls

•Avoiding unnecessary traversals of a list (which
often correlates with using accumulators)

•The book inexplicably does not discuss tail
calls/tail recursion, which was a major focus of
the pre-book Comp 210 course. Tail-recursion is
extremely important because it corresponds to
iteration (loops).

Comp 211, Spring 2011 3

Last class: Accumulators

Looked at three examples

•Computing the partial sums for a
sequence

•Reversing a list

•Flattening a general list

Comp 211, Spring 2011 4

Last class: Accumulators

In coding an accumulator based solution to a
programming problem, the programmer must
answer the following three questions:

•How to use the accumulated value to produce the
final answer.

•How to update the accumulated value when we
make a recursive call.

•How to initialize the accumulated value.

Comp 211, Spring 2011 5

Design Recipe

When do we need an accumulator?

We pointed out some tell-tail(!) signs:

•We miss some context (or history) information

•The result of the recursive call is processed by
another function (a non-tail call!)

•Difficulty in ensuring termination (uncommon
because setting a flag in each node [structure] as it
is visited is usually preferable

This list is not exhaustive

Comp 211, Spring 2011 6

Factorial

•Even factorial could benefit from an accumulator!

•Why? The recursive call on fact is embedded inside
another call (on *) which means the computer must
maintain a calling stack to manage the recursion!
Call-stack maintenance is NOT free.

•Which one is faster?

Comp 211, Spring 2011 7

Dueling Factorials

(define (fact n)

 (cond [(= n 0) 1]

 [else (* n (fact (sub1 n)))]))

(define (fact-help n ans)

 (cond [(= n 0) ans]

 [else (fact-help (sub1 n) (* n

ans))]))

(define (fast-fact n) (fact-help n 1))

The recursive call on fact-help is in tail
position in the function body, meaning that no
subsequent processing is performed on the
result of the call in evaluating the body.

Comp 211, Spring 2011 8

Tail Position

•Consider our law for evaluating Scheme expressions.
When a function call (application) embedded in the
body of a function definition (for f) must be the last
form to be reduced in evaluating a call(f v1 … vn),
that call is in tail position.

•Note that a function definition may have several
different embedded calls that are in tail position.
Why? Because conditionals create multiple control
paths through the function. Think about our
reduction rules for cond.

Comp 211, Spring 2011 9

Examples

•Which function calls are in tail position?
 (define (fact n)
 (cond [(= n 0) 1] ;; no function call in result

 [else (* n (fact (sub1 n)))]))

•(define (fact-help n ans)

 (cond [(= n 0) ans] ;; no function call in result

[else (fact-help (sub 1) (* n ans))]))

•(define (fast-fact n) (fact-help n 1))

Comp 211, Spring 2011 10

Reduction pattern (factorial)

 (fact 3)

=>* (* 3 (fact 2))

=>* (* 3 (* 2 (fact 1)))

=>* (* 3 (* 2 (* 1 (fact 0))))

=>* (* 3 (* 2 (* 1 1)))

=> (* 3 (* 2 1))

=> (* 3 2)

=> 6

Comp 211, Spring 2011 11

Reduction pattern (fast-fact)

 (fast-fact 3)

=> (fact-help 3 1)

=>* (fact-help 2 (* 3 1))

=> (fact-help 2 3)

=>* (fact-help 1 (* 2 3))

=> (fact-help 1 6)

=>* (fact-help 0 (* 1 6))

=> (fact-acc 0 6)

=>* 6

Comp 211, Spring 2011 12

Why are non-tail calls expensive?

•Tail-calls compile to jumps (branches). Tail recursive calls compile to loop
(backwards) branches. Branches are only slightly more expensive than ordinary
instructions. In fact they can actually be cheaper with the right hardware
support.

•Non-tail calls compile (translate) to expensive "jump to subroutine" instructions
(which are covered in both Elec 220 and Comp 221).

•A "jump to subroutine" instruction allocates space in the control stack (a chunk
of memory reserved by the OS for each computation) to save information about
the machine state at the point of the call, saves critical information and then
jumps to the subroutine. The saved information enables a subsequent
"subroutine return" instruction to restore the machine state at the the point of
call (with the returned value in a designated register).

•In contrast, a tail call never needs to return to the point of call. It can return to
the caller's point of call. Hence, It simply stores the result in the appropriate
register and follows the control dictated by the context of the point-of-call.

Comp 211, Spring 2011 13

Naive Reverse

(define (rev l)

 (cond [(empty? l) empty]

 [else

 (append (rev (rest l))

 (list (first l))]))

The subcomputation in red must be performed after
the call on rev completes

Comp 211, Spring 2011 14

Tail-recursive Reverse

(define (rev-help l ans)

(cond [(empty? l) ans]

 [else

 (rev-help (rest l)

 (cons (first l) ans))]))

(define (fast-rev l) (rev-help l empty))

The recursive call on rev-help can be implemented
by branching back to the code for the enclosing cond
operation reusing the stack frame for the calling
invocation of rev-help. The initial call on rev-help
(in reverse) can be "inlined". So the optimized
machine translation of this call looks just like it does
for corresponding loop code.

Comp 211, Spring 2011 15

Example reductions

•Try
(reverse '(a b c))

using the DrScheme stepper.

•Try
(fast-rev '(a b c))

Comp 211, Spring 2011 16

Conversion to tail form

Always possible? Always profitable?

•Always possible, but requires passing closures (functions) as
arguments, which requires heap allocation. Called conversion to
continuation-passing style (CPS). May or may not be profitable.
Covered in depth in Comp 311.

What about our examples? They did not use closures. We relied
on associativity of *, conversion of append to cons. Tail calls
are very profitable when they substitute a cheap operation like
cons for an expensive one like append. They can potentially
produce a huge space improvement if no closure allocation is
required and significant time improvement if the cost of
corresponding operations is unchanged.

Comp 211, Spring 2011 17

For Next Class

•Homework (correct version on wiki)
due Monday

