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Plan for today 

Provide a more precise technical motivation for  
accumulator concepts 

•Recognizing the need for accumulators 

•Avoiding non-tail recursive calls 

•Avoiding unnecessary traversals of a list (which 
often correlates with using accumulators) 

•The book inexplicably does not discuss tail 
calls/tail recursion, which was a major focus of 
the pre-book Comp 210 course.  Tail-recursion is 
extremely important because it corresponds to 
iteration (loops). 
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Last class:  Accumulators 

 

Looked at three examples 

•Computing the partial sums for a 
sequence 

•Reversing a list 

•Flattening a general list 
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Last class:  Accumulators 

In coding an accumulator based solution to a 
programming problem, the programmer must 
answer the following three questions: 

•How to use the accumulated value to produce the 
final answer. 

•How to update the accumulated value when we 
make a recursive call. 

•How to initialize the accumulated value. 
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Design Recipe 

When do we need an accumulator? 

We pointed out some tell-tail(!) signs: 

•We miss some context (or history) information 

•The result of the recursive call is processed by 
another function (a non-tail call!) 

•Difficulty in ensuring termination (uncommon 
because setting a flag in each node [structure] as it 
is visited  is usually preferable 

This list is not exhaustive 
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Factorial 

•Even factorial could benefit from an accumulator! 

•Why?  The recursive call on fact is embedded inside 
another call (on *) which means the computer must 
maintain a calling stack to manage the recursion!  
Call-stack maintenance is NOT free. 

•Which one is faster? 
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Dueling Factorials 

(define (fact n) 

  (cond [(= n 0) 1] 

        [else (* n (fact (sub1 n)))])) 

(define (fact-help n ans) 

  (cond [(= n 0) ans] 

        [else (fact-help (sub1 n) (* n 

ans))])) 

(define (fast-fact n) (fact-help n 1)) 

The recursive call on fact-help is in tail 
position in the function body, meaning that no 
subsequent processing is performed on the 
result of the call in evaluating the body. 
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Tail Position 

•Consider our law for evaluating Scheme expressions. 
When a function call (application) embedded in the 
body of a function definition (for f) must be the last 
form to be reduced in evaluating a call(f v1 … vn), 
that call is in tail position. 

•Note that a function definition may have several 
different embedded calls that are in tail position.  
Why? Because conditionals create multiple control 
paths through the function.  Think about our 
reduction rules for cond. 
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Examples 

•Which function calls are in tail position? 
 (define (fact n) 
   (cond [(= n 0) 1]  ;; no function call in result 

             [else (* n (fact (sub1 n)))])) 

•(define (fact-help n ans) 

   (cond [(= n 0) ans]  ;; no function call in result 

[else (fact-help (sub 1) (* n ans))])) 

•(define (fast-fact n) (fact-help n 1)) 
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Reduction pattern (factorial) 

    (fact 3) 

=>* (* 3 (fact 2)) 

=>* (* 3 (* 2 (fact 1))) 

=>* (* 3 (* 2 (* 1 (fact 0)))) 

=>* (* 3 (* 2 (* 1 1))) 

=>  (* 3 (* 2 1)) 

=>  (* 3 2) 

=>  6 
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Reduction pattern (fast-fact) 

    (fast-fact 3) 

=>  (fact-help 3 1) 

=>* (fact-help 2 (* 3 1)) 

=>  (fact-help 2 3) 

=>* (fact-help 1 (* 2 3)) 

=>  (fact-help 1 6) 

=>* (fact-help 0 (* 1 6)) 

=>  (fact-acc 0 6)  

=>* 6 
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Why are non-tail calls expensive? 

•Tail-calls compile to jumps (branches).  Tail recursive calls compile to loop 
(backwards) branches.  Branches are only slightly more expensive than ordinary 
instructions.  In fact they can actually be cheaper with the right hardware 
support. 

•Non-tail calls compile (translate) to expensive "jump to subroutine" instructions 
(which are covered in both Elec 220 and Comp 221).   

•A "jump to subroutine" instruction allocates space in the control stack (a chunk 
of memory reserved by the OS for each computation) to save information about 
the machine state at the point of the call, saves critical information and then 
jumps to the subroutine.  The saved information enables a subsequent 
"subroutine return" instruction to restore the machine state at the the point of 
call (with the returned value in a designated register). 

•In contrast, a tail call never needs to return to the point of call.  It can return to 
the caller's point of call.  Hence, It simply stores the result in the appropriate 
register and follows the control dictated by the context of the point-of-call. 
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Naive Reverse 

(define (rev l) 

  (cond [(empty? l) empty] 

        [else 

          (append (rev (rest l)) 

                  (list (first l))])) 

 

The subcomputation in red must be performed after 
the call on rev completes 
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Tail-recursive Reverse 

(define (rev-help l ans) 

(cond [(empty? l) ans] 

      [else  

        (rev-help (rest l) 

                  (cons (first l) ans))])) 

(define (fast-rev l) (rev-help l empty)) 

The recursive call on rev-help can be implemented 
by branching back to the code for the enclosing cond 
operation reusing the stack frame for the calling 
invocation of rev-help. The initial call on rev-help 
(in reverse) can be "inlined".   So the optimized 
machine translation of this call looks just like it does 
for corresponding loop code. 
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Example reductions 

•Try 
(reverse '(a b c)) 

using the DrScheme stepper. 

•Try 
(fast-rev '(a b c)) 
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Conversion to tail form 

Always possible?  Always profitable? 

•Always possible, but requires passing closures (functions) as 
arguments, which requires heap allocation.  Called conversion to 
continuation-passing style (CPS).  May or may not be profitable. 
Covered in depth in Comp 311. 

What about our examples?  They did not use closures.  We relied 
on associativity of *, conversion of append to cons.  Tail calls 
are very profitable when they substitute a cheap operation like 
cons for an expensive one like append.  They can potentially 
produce a huge space improvement if no closure allocation is 
required and significant time improvement if the cost of 
corresponding operations is unchanged. 



Comp 211, Spring 2011 17 

For Next Class 

•Homework (correct version on wiki) 
due Monday 

 

 


