Clever Programming With Functions

Prof. Robert “Corky” Cartwright
Department of Computer Science
Rice University
Using Functions to Represent Objects

• How can we represent a pair in Scheme so that the only operations that code can perform on pairs are:
 (make-pair x y)
 (pair-first p)
 (pair-second p)
 (pair-equal? p1 p2)

• What if we represent a pair as a list? As a struct? Structs are not as robust as you might think. In the advanced language level try:
 (define-struct Pair (first second))
 (define p (make-Pair 1 2))
 (set-Pair-first! P 17)
 p
This representation trick is very important. It shows how closures (functions with free variables treated as first-class data values) can be used to represent abstract (black-box) data types.
Useful Functionals

- What is a *functional*? A function that takes a function as an argument and often returns a function. The differential and integral operators in calculus are functionals.

- Important functionals in functional programming:
 - map
 - filter
 - foldr
 - foldl
 - curry
The Idea Behind curry

- Every function of the form
 \[A \times B \rightarrow C \]
 can be converted to a function of type
 \[A \rightarrow (B \rightarrow C) \]
 which is often more convenient.

- In set theory, here is an isomorphism between
 \[A \times B \rightarrow C \]
 and
 \[A \rightarrow B \rightarrow C \]
 This correspondence *roughly* holds for programming language types.
A Simple Example

map : A → B → C
map : (X → Y) (list-of X) → (list-of Y)

map' : A → (B → C)
map' : (X → Y) → (list-of X) → (list-of Y)
Standard Map

(define map
 (lambda (f l)
 (cond
 [(empty? l) empty]
 [else
 (cons (f (first l))
 (map f (rest l)))])))
Curried Map

- A definition in terms of map:

 (define (map’ f)
 (lambda (l) (map f l)))

- When written from scratch, it looks almost exactly like map:

 (define map’
 (lambda (f)
 (lambda (l)
 (cond
 [(empty? l) empty]
 [else (cons (f (first l))
 (map f (rest l)))])))
Can We Define a Functional that Curries?

Unfortunately, we need a separate curry function for each function arity ≥ 2.

```
(define (curry f)
  (lambda (x)
    (lambda (y) (f x y))))
```
Uncurry

• Question: See if you can write

\[\text{uncurry} : (A \rightarrow (B \rightarrow C)) \rightarrow (A \times B \rightarrow C) \]

• Note the equational properties:

\[\text{curry} (\text{uncurry } f) = f \]
\[\text{uncurry} (\text{curry } f) = f \]

• These are laws in mathematics, but the first fails in programming languages even when \(f \) is restricted to a value. It doesn't hold in either CBN or CBV. Why? The left-hand side never throws an exception or diverges on the first application.

• Both equations fail if \(f \) can be an expression rather than a value of the appropriate type. Why? The evaluation of the left hand side never diverges or generates an exception.

• Yet these equations are widely taught by PL experts as if PL domain theory was set theory. They are NOT identities for PL code!
The Crux of The Difference

- Why don't functional languages obey standard laws from set theory?
- *Eta*-conversion fails in the PL world which admits divergent definitions.
- *Eta*-conversion is often added as an axiom to the \(\lambda \)-calculus. It does not disturb the major properties.
- *Eta*-conversion asserts:
 \[
 \lambda x. Ex = E \quad (\text{where } x \text{ does not occur free in } E)
 \]
- It fails even when the type of \(E \) is restricted to a unary function type.
Another Important Functional: \(\mathbf{Y} \)

- lambda-notation (as in Scheme) indirectly supports recursion. How? A clever construction based on sophisticated mathematics (lambda-calculus).

- Short story: solutions to recursion equations are "fixed points". Given the equation
 \[
 f(x) = E_f, \quad \text{(which is equivalent to } f = \lambda x. E_f) \]
what is the least solution \(f^* \)? Under proper conditions,
 \[
 f^* = \text{lub } F^i(\bot)
 \]
where \(F(f) = \lambda f.\lambda x. E_f \)) and \(\bot \) is the least-defined function (i.e., the function denoted by \(\Omega \)). \(\mathbf{Y} \) is defined by
 \[
 \mathbf{Y}(F) = f^* \text{ where } (f^* \text{ is least solution of } F(f^*) = f^*).
 \]
Defining Y

- λ-calculus programming trick: use a variation on

 $\Omega = (\text{self self}) \ k[\langle x \ f(x \ x) \rangle \ \langle x \ f(x \ x) \rangle] = \ldots(\text{self self})$

 $\langle x \ f(x \ x) \rangle \ \langle x \ f(x \ x) \rangle = f[(\sq x. \ f(x \ x)) \ \langle x \ f(x \ x) \rangle]$

 $= f^2[(\langle x. \ f(x \ x) \rangle \ \langle x. \ f(x \ x) \rangle)] = \ldots$

 $= f^k[(\langle x. \ f(x \ x) \rangle \ \langle x. \ f(x \ x) \rangle)] = \ldots$

- In CBN languages

 $Y = \lambda f. \ \langle x. \ f(x \ x) \rangle \ \langle x. \ f(x \ x) \rangle$

- CBV is slightly harder and messier because Y^F does not terminate. Trick: convert the term $\langle x. \ f(x \ x) \rangle$ to

 $\langle x. \ [\lambda y. f(x \ x)]y \rangle$ (eta-conversion of the diverging term).

- Default for λ-calculus is CBN. Default for programming languages is CBV.
Bonus Material: Other Powerful Functionals: S,K

• Every closed λ-expression can be written without any variables given the three primitive functionals S, K, I where
 • $S = \lambda x.\lambda y.\lambda z. (xz)(yz)$
 • $K = \lambda x.\lambda y. X$
 • $I = \lambda x. x$

• In fact, you only need two because
 • $I = S(KK)$

• Functionals defined by closed λ terms (and nothing else are called combinators. Y (in all its varieties) is a combinator.
For Next Class

- Homework due Friday
- Review of Scheme material in lecture on Wednesday and Friday.

- Reading:
 - Review for coming exam which will be distributed on Friday.