
 1

Static Class Members and Singletons

Corky Cartwright

Department of Computer Science

Rice University

 COMP 211, Spring 2009 2

DrJava Intermediate Level

• For HW8, we will progress to the Intermediate Language Level.
Beware of the fact that Java language levels are not fully upward
compatible. DrJava compiles each file based on its file type, but If
you generate a .dj0 test class and manually save it as a .dj1 test
class, it will not compile without modification.

• At the Intermediate level, the static, public, and private
visibility attributes for classes and methods are enabled, but they are
prohibited at the Elementary level. The JUnit framework requires
that test classes be public. The translator for the Elementary
level generates the public attribute for test classes. The
Intermediate level does not generate the public attribute for test
classes, but includes it in the provided template.

• The Elementary and Intermediate levels make the same distinction
with regard to import statements.

 COMP 211, Spring 2009 3

static Class Members
• Almost all of the fields and methods that we have seen thus far

have been attached to Java objects (class instances), but fields
and methods can also be attached to Java classes. Such fields
and methods and called static class members.

• We will defer discussing static methods. They are not
supported at the Intermediate Level in DrJava. Starting with HW8,
set your language level to the Intermediate Level.

• static fields are used primarily to store constants associated with
a class. Why static? We only need one copy of a constant. It
is wasteful to create a copy in every object of a class. You have
already seen a few static fields in the context of Java libraries.
The fields MAX_VALUE and MIN_VALUE, which are present in all of
the wrapper classes except Boolean, are static.

 COMP 211, Spring 2009 4

private Class Members
Any static or dynamic (instance) field or method can be marked

as private. A private field is visible only within the class in
which it is defined. We use private much like Scheme local
but confining a variable's scope to a class is much less
restrictive that confining it to an expression. We will defer
discussing static methods until later in the course; they are
not very important.

private members are used primarily for methods and fields that
only concern the class containing them, e.g. help methods.
Note that in the context of the composite pattern, we cannot
make a help method private, because the method must be
visible in all of the classes in the composite hierarchy.

 COMP 211, Spring 2009 5

The Singleton Pattern

An important application of the static
and private attributes is the singleton
pattern. Each execution of the
expression

new EmptyIntList()
creates a new object. In principle, there
is only one empty list, just like there is
only one number 0. Hence, we would
like to represent the empty list by a
single object.

 COMP 211, Spring 2009 6

Implementing Singleton

A unique instance of a class (singleton
pattern) can be created using two
chunks of code:

• a static field in the class that holds the single
instance of the class

• a private attribute on the class constructor,
so no client can create another instance of the
class.

 COMP 211, Spring 2009 7

Singleton IntList
abstract class IntList {
 abstract IntList sort();
 IntList cons(int n) { return new ConsIntList(n, this); }
 abstract IntList insert(int n);
}

class EmptyIntList extends IntList {
 static EmptyIntList ONLY = new EmptyIntList();
 private EmptyIntList() { }
 IntList sort() { return this; }
 IntList insert(int n) { return cons(n); }
}

class ConsIntList extends IntList {
 int first;
 IntList rest;
 IntList sort() { return rest.sort().insert(first); }
 IntList insert(int n) {
 if (n <= first) return cons(n);
 else return rest.insert(n).cons(first);
 }
}

Static member holding the unique instance

Private constructor

 COMP 211, Spring 2009 8

For Next Class
• Labs this afternoon and tomorrow
• Easy Homework due Friday
• Reading: OO Design Notes, Ch. 1.6-

1.8.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

