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Mutation: Succumbing to the Dark 
Side? 

Four common problems in computing: 

o Assume that we are repeatedly evaluating a method/function m often evaluating 
m on the same list of arguments.   How can we avoid performing the same 
computation more than once? 

o Assume we want to compute the number of a nodes in a tree data structure 
where nodes can be shared (the standard situation in OO programming with 
immutable data).  How can we efficiently perform this computation? 

o Perhaps the simplest data structure from the perspective of machine 
implementation is the array: a fixed-size list of elements that is allocated in 
contiguous machine memory where each element e is represented by a fixed 
size chunk of memory.   The array was the only data structure in the original 
Fortran language.   How can we create such structures using simple machine 
operations?  How can we efficiently compute new ones? 

o How can I represent cyclic linked structures (general graphs rather trees)? 

 

The best solutions to these four problems all rely on data mutation. 
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 Mutation: Definition 

Mutation is rebinding a variable to a new value.  What is a variable?  A cell in 
computer memory containing a value such as an int or an (address of an) Object.  
Rebinding that variable destroys the former binding, replacing the contents of the 
memory cell (for the variable) with a new value. 

 

Mutation is nearly non-existent in mathematics.  We don't change numbers or 
functions; we simply construct new ones.  Why?  From the perspective of human 
thought, creating new values is much simpler.  We don't have to remember what 
changes have been made to existing values and there is no extra cost incurred in 
creating new mathematical objects as opposed to changing existing ones. 

 

In computation, the trade-offs are different.  Mutation may have a large 
conceptual overhead--we have remember exactly what has changed at any point 
in a computation--but it also has huge efficiency and modeling advantages.  The 
efficiency advantage is that the cost of creating a new data structure (assuming 
we can dispense with an existing one) is simply the cost of the changes 
(differences) between the new structure and the old one. 
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 Modeling Involves Mutation 

In many computational models, objects in the model evolve over 
time.  Examples: 

•Bank accounts 

•Stock prices 

•Enrollment (and roster) of a college class 

•Temperature in your dorm room 

 

Physical systems change over time, but the identities of the objects 
in the system change much less often that the properties of those 
objects.  Example: humanity.  Every few seconds, significant 
properties of almost every human being change (location, heart 
rate, posture, etc.) but new human beings are born infrequently 
(relative to changes in the status of the existing population).    
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 Mutation Manifesto 

Execution recapitulates system evolution 
Given a physical system, it evolves in time.  In most 
computations, the natural way to model this evolution is 
to simply update a data structure representing the state 
of the system. 

 

What is the functional (immutable alternative)?  

Modeling physical systems as functions mapping time to 
states.  But this is expensive (and in many cases 
conceptually exhausting) because all history is explicitly 
retained in the computational model. 
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Side Effects: A Double-edged Sword 

public class Box<T> { 

  private T data; 

  public Box(T data) { this.setData(data);} 

  public T getData() {return data;} 

  public void setData(T data) {this.data = data;} 

} 

 

Box<Integer> b1 = new Box<Integer>(42);  // create an instance of a Box. 

Box<Integer> b2 = b1;  // b1 and b2 refer to the same Box containing “42” 

 

b1.setData(123);   // mutate the Box’s contents. 

 

b2.getData() // now returns “123” even though b2 was never touched. 

 

Very useful, but also very dangerous! 

• Useful because we can model something changing due to outside influences. 

• Dangerous because one can never tell if or when something will change. 
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 OOP Mutation Guidelines 

OO style dictates the disciplined use of mutation 

• Never modify fields directly – always grab control of the 

mutating process. 

• Support high level mutation via mutating methods – 
don’t allow low-level manipulations of the data, rather 
represent mutations as high-level operations inherent in the 
larger model of your system. 

• Limit the scope of mutations – Limit the extent that side-

effects can be seen by using various encapsulation 
techniques (scoping, visibility, etc.). 
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 Example 1: Memo Functions 

Consider a naive program to compute the Fibonacci function.  How can 
we speed it up without any mathematical reworking of the problem?   

Brute force speed-up: 

class MyMath { 

  static long fib(int n) { 

    if (n <= 1) return 1; 

    else return fib(n-1) + fib(n-2); 

  } 

} 

 

Java syntax note: static = belongs to the class, not the individual 

object instances and thus is accessible to all instances of that class and 

to outsiders (if visible) directly from the class, e.g. MyMath.fib(42) 
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Memo Functions cont. 

We can avoid re-computing fib(n) for a given value of n by maintaining a 
table recording all previously computed values.  We will use a HashMap (a 
dictionary) for this purpose although we could easily use an expandable array 
to represent the table with less (a constant factor) execution overhead but 
more programming effort 

 
import java.util.HashMap; 
class BetterMath { 
  static HashMap<Integer, Long> Fib = new HashMap<Integer, Long>(); 
  static long fib(int n) { 
    if (n <= 1) return 1; 
    else { 
      Long cachedAnswer = Fib.get(n); 
      if (cachedAnswer != null) return cachedAnswer; 
      else { 
        long newAnswer = fib(n-1) + fib(n-2); 
        Fib.put(n, newAnswer); 
        return newAnswer; 

      } 

    } 
  } 

} 
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Example 2: Counting Tree Nodes 

Idea: we want to avoid counting a node more than once.  How 
can we do this?  When we start to visit a node, abort the 
visitation if node has "already been visited".  How do we 
determine if a node has "already been visited"? 

o Add a boolean "flag" field to our node representation initialized to 
false and mutate it to true when a node is visited. 

o Requires changing the node representation. 

o Boolean flags be cleared (requiring a tree traversal) before reuse. 

o Add a static HashSet<Node> field to the Node class (or other 
convenient class) that holds the set of nodes that have been 
visited. 

o Less intrusive; node representation is unchanged. 

o Slightly more overhead.  How is HashSet implemented? 
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Example 3: Initializing and  
Manipulating Arrays 

Can arrays be incorporated in a functional language?  Yes but they can 
only be used to hold immutable tables mapping 0 < i < n to some type 
T.   

How can we create them?  We need a primitive array construction 

operation that takes two arguments n and a function f mapping int to T 
that specifies the value f(i) of the ith array element. 

How can we initialize arrays without using functions as data 
(alternatively, only using simple machine operations)?  By allocating a 
block of memory (of proper size) and mutating the elements in that 

block.  Use a loop (a special form of tail recursion) like the following: 

    for (int i = 0; i < n; i++) a[i] = <some expression in i>; 

Recall that for expands into a while. 
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 Example 4: Cyclic Linked Structures 

Josephus Problem: naive simulation of cannibals killing captives 
arranged in a circle. 

 

“Ring Buffers” – used in digital delay and capture systems. 

 

Regular infinite trees or lists (analogous to repeating decimals) are 
easily represented by lists extended to allow back pointers, that is, 
lists or trees that reference themselves.  These are related to 
fractals, tilings (ala M.C. Escher), etc. 

http://en.wikipedia.org/wiki/Josephus_problem
http://en.wikipedia.org/wiki/Circular_buffer
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 Background on Lists 

Scheme lists and composite pattern lists in Java are internally represented 

using a linked list of Cons nodes.  Each Cons node N is a chunk of memory 

containing a field first and a field rest.  In each node N, these fields are 

the addresses of: 

o the object o that is the first element in the list rooted at N and 

o the Cons node N' representing the rest of the list rooted at N'. 

 

In functional programming (Java programming with immutable objects), 

these fields are never modified after they are initialized. In imperative 

(mutable data) programming, they can be modified. 

 

Mutation can be performed with discipline and taste.  We will focus initially 

on the mutable generalization of composite lists. 
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 Mutable Generalization of Functional Lists 

QuasiLists are singly-linked lists which make the first and rest fields 
of a Cons node mutable.   Nguyen and Wong’s “Linear Recursive 
Structure” (”LRS”) implementation also models the state transition 

that occurs when a list mutates between empty and non-empty.   See 
the class notes on OO design.    

• The behavior of QuasiLists is essentially the same as immutable 

singly-linked lists, though the mutation can make certain 
operations faster by eliminating copying.  Accessing any given data 
element is about the same speed however. 

• QuasiLists do enable side-effects where decoupled parts of a 

system can share the effects of operations on a list of data. 

 

http://www.bandgap.cs.rice.edu/personal/adrice_swong/public/WebPages/research/SIGCSE99/default.htm
http://www.bandgap.cs.rice.edu/personal/adrice_swong/public/WebPages/research/SIGCSE99/default.htm
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 Doubly-linked Lists: BiLists 

A “doubly-linked” list has two references to another list, one to the list after 
the current node (same as singly-linked list) and one to previous node. 

 

 

 

 

 

 

 

• Fast access to the end of the list 

• More complicated.   More “heavy weight”.  Possibly slower. 

• No terminating class – must use loops with iterators 

 

rest rest rest 

rest rest rest 

prev prev prev 

prev 

rest 

Singly-linked: 

Doubly-linked 
& circular: 
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BiList structure 

BiList 
 
 

 

Head 
node succ pred 

The mutating Nodes are 
hidden behind the 
“encapsulation barrier” of 
the BiList class. 
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BiList code snippets 

Here are some code snippets that show you how the insertFront and 

insertRear operations are done in BiList: 
   

   public BiList<T> insertFront(T o) { 

      Node<T> next = head.succ; 

      Node<T> newNode = new Node<T>(o, head, next);  // allocate new Node 

      // insert new Node 

      head.succ = newNode; 

      next.pred = newNode; 

      length++; 

      return this; 

   } 

 

   public BiList<T> insertRear(T o) { 

      Node<T> prev = head.pred; 

      Node<T> newNode = new Node<T>(o, prev, head);  // allocate new Node 

      // insert new Node 

      head.pred = newNode; 

      prev.succ = newNode; 

      length++; 

      return this; 

   } 
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BiList code snippets, continued… 

Here are some code snippets that show you how the remFront and 

remRear operations are done in BiList: 
   

 public T remFront() { 

      if (isEmpty()) { 

         throw new IllegalStateException("Attempt to remove first element of empty BiList"); 

      } 

      Node<T> next = head.succ; 

      T remOb = next.item; 

      Node<T> newNext = next.succ; 

      head.succ = newNext; 

      newNext.pred = head; 

      length--; 

 

      return remOb; 

   } 

 

   public T remRear() { 

      if (isEmpty()) { 

         throw new IllegalStateException("Attempt to remove last element of empty BiList"); 

      } 

      Node<T> last = head.pred; 

      T remOb = last.item; 

      Node<T> lastPred = last.pred; 

      head.pred = lastPred; 

      lastPred.succ = head; 

      length--; 

      return remOb; 

   } 
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 Comments on BiList code 

Supports the iterator design pattern, which is 
applicable to any data structure that holds a 

collection of items.  An iterator for a collection 

enables the elements to be processed as a 

sequence in some order. 

Key operations: 

o Factory method (design pattern) for constructing an 
iterator 

o Method for advancing the iterator cursor 

o Method for getting the current item 

o Method for testing whether cursor is at the end of 
enumerating the collection. 



BiIterator class from BiList.java 

 private class BiIterator implements BiIteratorI<T> { 

    Node<T> current; 

    BiIterator() { 

       current = BiList.this.head.succ;  // current is first item (if one exists) 

    } 

    public void first() { 

       current = BiList.this.head.succ;  // current is first item (if one exists) 

    } 

    public void last() { 

       current = BiList.this.head.pred;  // current is last item (if one exists) 

    } 

    public void next() { 

         current = current.succ;         // wraps around end including header 

    } 

    public void prev() { 

       current = current.pred;           // wraps around end including header 

    } 

    public T currentItem() { 

       if (current == BiList.this.head) { 

          throw new IteratorException("No current element in " + BiList.this); 

       } 

       return current.item; 

    } 

    public boolean atEnd() { return current == BiList.this.head; } 

 } 
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 BiIterator class commentary 

BiIterator is an advanced Java class.  Why? 

It is an inner class. 

What is the difference between static and dynamic 
inner classes 

It is private 

•It is generic. 

Why isn't it declared as BiIterator<T>? 

What is the scope of a type parameter? 

•It is private. 
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While Loops 

COMP 211, Spring 2010 22 

A “while” loop is a program structure that executes a set of Java 
statements  while a particular condition is “true”  (remember: 
“do if true”). 
 
The basic Java syntax is: 
 
while(boolean_expression) { 

   // set of statements 

} 

 
The boolean expression is re-evaluated every time the loop repeats, until it 
evaluates to “false”, at which point the loop immediately terminates and the 
program resumes at the line right after the loop. 



Using an Iterator 

COMP 211, Spring 2010 23 

“!iterator.atEnd()” is usually the best boolean expression 

to use.  Note the use of the boolean negation because we 
want “not at the end”. 
 

public static <T> boolean delete(BiListI<T> host, T elt) { 

  IteratorI<T> it = host.newIterator() 

   

  while(!it.atEnd()) { 

     if (it.currentItem().equals(elt)) { 

            it.remove(); 

            return true; 

         } 

     it.next() 

  } 

  return false; 

} 



Delegation Model Programming 

• “If your code depends on what an object is (i.e. its class type), then 
delegate to it.” 

• Use the fact that an object knows what to do –polymorphism. 
• Minimize the use of conditionals 

• Delegate to the object (call a method on the object) rather than 
extracting information from the object and using a conditional to 
process that information.  

• Techniques: 
• Interpreter pattern:  put methods on each type of object that enables it 

to do it’s own processing  polymorphic dispatching to that object. 

• Visitor pattern:  Code type-dependent processes as cases of a visitor.   
Do the processing of the unknown object by having it accept the visitor. 

 
Note:  Using iterators is generally not considered consistent with delegation model 
programming.   Real program generally use a mix of imperative/procedural styles like 
iterators mixed with delegation styles like recursion, polymorphic dispatching, etc.  

 


