
CHAPTER 2

BACKGROUND

In this chapter, we present a overview of the polyhedral model, and introduce

notation used throughout the dissertation. The mathematical background on linear

algebra and linear programming required to understand the theoretical aspects of

this dissertation is fully covered in this chapter. A few fundamental concepts and

definitions relating to cones, polyhedra, and linear inequalities have been omitted

and they can be found in [Wil93] and [Sch86]. Detailed background on traditional

loop transformations can be found in [Wol95, Ban93]. Overall, I expect the reader to

find the background presented here self-contained. [Bas04b, Gri04] are among other

sources for introduction to the polyhedral model.

All row vectors will be typeset in bold lowercase, while regular vectors are typeset

with an overhead arrow. The set of all real numbers, the set of rational numbers, and

the set of integers are represented by R, Q, and Z, respectively.

9

2.1. Hyperplanes and Polyhedra

2.1 Hyperplanes and Polyhedra

Definition 1 (Linear). A k-dimensional function f is linear iff it can expressed in

the following form:

linear function f(~v) =Mf~v (2.1)

where ~v =







v1

...
vd






and Mf ∈ Rk×d is a matrix with k rows and d columns.

In our context, Mf is an integer matrix, i.e., Mf ∈ Zk×d

Definition 2 (Affine). A k-dimensional function f is affine iff it can expressed in

the following form:

affine function f(~v) =Mf~v + ~f0 (2.2)

where ~v =







v1

...
vd






andMf ∈ Rk×d is a matrix with k rows and d columns, f0 ∈ Rk

is a k-dimensional vector. In all cases, we deal with affine functions with Mf ∈ Zk×d

and f0 ∈ Zk. The domain is also a set of integers: ~v ∈ Zd.

Definition 3 (Null space). The null space of an affine function f(~v) =Mf~v + ~f0 is
{

~x | f(~x) = ~0
}

.

f is a one-to-one mapping iff Mf has full column rank, i.e., if it has as many

linearly independent rows (and columns) as the number of its columns. In such a

case, the null space is 0-dimensional, i.e., trivially the vector ~0.

10

2.1. Hyperplanes and Polyhedra

Definition 4 (Affine spaces). A set of vectors is an affine space iff it is closed under

affine combination, i.e., if ~x, ~y are in the space, all points lying on the line joining ~x

and ~y belong to the space.

A line in a vector space of any dimensionality is a one-dimensional affine space.

In 3-d space, any 2-d plane is an example of a 2-d affine sub-space. Note that ‘affine

function’ as defined in (2.2) should not be confused with ‘affine combination’, though

several researchers use the term affine combination in place of an affine function.

Definition 5 (Affine hyperplane). An affine hyperplane is an n − 1 dimensional

affine sub-space of an n dimensional space.

In our context, the set of all vectors v ∈ Zn such that h.~v = k, for k ∈ Z, forms

an affine hyperplane. The set of parallel hyperplane instances correspond to different

values of k with the row vector h normal to the hyperplane. Two vectors ~v1 and ~v2

lie in the same hyperplane if h.~v1 = h.~v2. An affine hyperplane can also be viewed

as a one-dimensional affine function that maps an n-dimensional space onto a one-

dimensional space, or partitions an n-dimensional space into n−1 dimensional slices.

Hence, as a function, it can be written as:

φ(~v) = h.~v + c (2.3)

Figure 2.1(a) shows a hyperplane geometrically. Throughout the dissertation, the hy-

perplane is often referred to by the row vector, h, the vector normal to the hyperplane.

A hyperplane h.~v = k divides the space into two half-spaces, the positive half-space,

11

2.1. Hyperplanes and Polyhedra

φ(~x
) =

k

φ(~x) ≤ k

φ φ(~x) ≥ k

(a) An affine hyperplane

for (i = 0; i < N; i++)

for (k = 0; k < N; k++)
S1

S2

for (j = 0; j < N; j++)

S1

for (j = 0; j < N; j++)
S2

for (i = 0; i < N; i++)

(b) Polyhedra (courtesy: Loopo display tool)

Figure 2.1: Hyperplane and Polyhedron

h.~v ≥ k, and a negative half-space, h.~v ≤ k. Each half-space can be represented by

an affine inequality.

Definition 6 (Polyhedron, Polytope). A polyhedron is an intersection of a finite

number of half-spaces. A polytope is a bounded polyhedron.

Each of the half-spaces provides a face to the polyhedron. Hence, the set of

affine inequalities, each representing a face, can be used to compactly represent the

polyhedron. If there are m inequalities, then the polyhedron is

{

~x ∈ Rn | A~x+~b ≥ ~0
}

where A ∈ Rm×n and ~b ∈ Rm.

12

2.1. Hyperplanes and Polyhedra

A polyhedron also has an alternate dual representation in terms of vertices, rays,

and lines, and algorithms like the Chernikova algorithm [LeV92] exist to move from

the face representation to the vertex one. Polylib [Pol] and PPL [BHZ] are two

libraries that provide a range of functions to perform various operations on polyhedra

and use the dual representation internally.

In our context, we are always interested in the integer points inside a polyhedron

since loop iterators typically have integer data types and traverse an integer space.

The matrix A and ~b for problems we will deal with also comprise only integers. So,

we always have:
{

~x ∈ Zn | A~x+~b ≥ ~0
}

(2.4)

where A ∈ Zm×n and ~b ∈ Zm.

Lemma 1 (Affine form of the Farkas lemma). Let D be a non-empty polyhedron

defined by p affine inequalities or faces

ak.~x+ bk ≥ 0, k = 1, p

then, an affine form ψ is non-negative everywhere in D iff it is a non-negative linear

combination of the faces:

ψ(~x) ≡ λ0 +

p
∑

k=1

λk (ak~x+ bk) , λ0, λ1, . . . , λp ≥ 0 (2.5)

The non-negative constants λk are referred to as the Farkas multipliers. Proof of

the if part is obvious. For the only if part, see Schrijver [Sch86]. We provide the

13

2.2. The Polyhedral Model

main idea here roughly. The polyhedron D lies in the non-negative half-space of the

hyperplane ψ(~x). This makes sure that λ0 has to be non-negative if the hyperplane

is pushed close enough to the polytope so that it touches a vertex of the polyhedron

first without cutting the polyhedron. If a hyperplane passes through a vertex of the

polyhedron and with the entire polyhedron in its non-negative half-space, the fact that

it can be expressed as a non-negative linear combination of the faces of the polyhedron

directly follows from the Fundamental Theorem of Linear Inequalities [Sch86].

Definition 7 (Perfect loop nest, Imperfect loop nest). A set of nested loops

is called a perfect loop nest iff all statements appearing in the nest appear inside the

body of the innermost loop. Otherwise, the loop nest is called an imperfect loop nest.

Figure 2.6 shows an imperfect loop nest.

Definition 8 (Affine loop nest). Affine loop nests are sequences of imperfectly

nested loops with loop bounds and array accesses that are affine functions of outer

loop variables and program parameters.

Program parameters or structure parameters are symbolic constants that appear

in loop bounds or access functions. They very often represent the problem size. N is

a program parameter in Figure 2.1(b), while in Figure 2.2, N and β are the program

parameters.

2.2 The Polyhedral Model

The polyhedral model is a geometrical as well as a linear algebraic framework for

capturing the execution of a program in a compact form for analysis and transforma-

14

2.2. The Polyhedral Model

tion. The compact representation is primarily of the dynamic instances of statements

of a program surrounded by loops in a program, the dependences between such state-

ments, and transformations.

Definition 9 (Iteration vector). The iteration vector of a statement is the vector

consisting of values of the indices of all loops surrounding the statement.

Let S be a statement of a program. The iteration vector is denoted by ~iS. An

iteration vector represents a dynamic instance of a statement appearing in a loop nest

that may be nested perfectly or imperfectly.

Definition 10 (Domain, Index set). The set of all iteration vectors for a given

statement is the domain or the index set of the statement.

A program comprises a sequence of statements, each statement surrounded by

loops in a given order. We denote the domain of a statement S by DS. When the

loop bounds and data accesses are affine functions of outer loop indices and other

program parameters, and all conditionals are statically predictable, the domain of ev-

ery statement is a polyhedron as defined in (2.4). Again, conditionals that are affine

functions of outer loop indices and program parameters are statically predictable.

Affine loop nests with static control are also called static control programs or regular

programs. These programs are readily accepted in the polyhedral model. Several of

the restrictions for the polyhedral model can be overcome with tricks or conservative

assumptions while still making all analysis and transformation meaningful. How-

ever, many pose a challenging problem requiring extensions to the model. Techniques

15

2.2. The Polyhedral Model

developed and implemented in this thesis apply to all programs for which a polyhe-

dral representation can be extracted. All codes used for experimental evaluation are

regular programs with static control.

for (i=0; i<N; i++)
for (j=0; j<N; j++)

S1: A[i , j] = A[i,j]+u1[i] v1[j] + u2[i] v2[j];

for (k=0; k<N; k++)
for (l=0; l<N; l++)

S2: x[k] = x[k]+beta A[l,k] y[l];

Figure 2.2: A portion of the GEMVER kernel

RAW

WAR

S1

S2

RAW
WAW

Figure 2.3: The data depen-
dence graph

Each dynamic instance of a statement S, in a program, is identified by its itera-

tion vector ~iS which contains values for the indices of the loops surrounding S, from

outermost to innermost. A statement S is associated with a polytope DS of dimen-

sionality mS. Each point in the polytope is an mS-dimensional iteration vector, and

i ≥ 0

j ≥ 0

−i+N − 1 ≥ 0

−j +N − 1 ≥ 0

DS1 :









1 0 0 0
0 1 0 0
−1 0 1 −1
0 −1 1 −1

















i

j

N

1









≥ 0

Figure 2.4: Domain for statement S1 from Figure 2.2

16

2.3. Polyhedral Dependences

the polytope is characterized by a set of bounding hyperplanes. This is true when

the loop bounds are linear combinations (with a constant) of outer loop indices and

program parameters (typically, symbolic constants representing the problem size).

2.3 Polyhedral Dependences

Dependences. Two iterations are said to be dependent if they access the same

memory location and one of them is a write. A true dependence exists if the source

iteration’s access is a write and the target’s is a read. These dependences are also

called read-after-write or RAW dependences, or flow dependences. Similarly, if a

write precedes a read to the same location, the dependence is called a WAR depen-

dence or an anti-dependence. WAW dependences are also called output dependences.

Read-after-read or RAR dependences are not actually dependences, but they still

could be important in characterizing reuse. RAR dependences are also called input

dependences.

Dependences are an important concept while studying execution reordering since

a reordering will only be legal if does not violate the dependences, i.e., one is allowed

to change the order in which operations are performed as long as the transformed

program has the same execution order with respect to the dependent iterations.

Data Dependence Graph. The Data Dependence Graph (DDG) G = (V,E) is

a directed multi-graph with each vertex representing a statement, i.e., V = S. An

edge, e ∈ E, from node Si to Sj represents a dependence with the source and target

17

2.3. Polyhedral Dependences

i

j

l

k

S1

S2

















1 0 0 0 0 0
0 −1 0 0 1 −1
0 0 1 0 0 0
0 0 0 −1 1 −1
1 0 0 −1 0 0
0 1 −1 0 0 0

































i

j

k

l

N

1

















≥

=

















0
0
0
0
0
0

















Figure 2.5: Flow dependence from A[i][j] of S1 to A[l][k] of S2 and its dependence
polyhedron (courtesy: Loopo display tool)

conflicting accesses in Si and Sj respectively. Figure 2.3 shows the DDG for the code

in Figure 2.2.

2.3.1 Dependence polyhedron.

For an edge e, the relation between the dynamic instances of Si and Sj that are

dependent is captured by the dependence polyhedron, Pe. The dependence polyhedron

is in the sum of the dimensionalities of the source and target statement’s polyhedra

along with dimensions for program parameters. If ~s and ~t are the source and target

iterations that are dependent, we can express:

〈~s,~t〉 ∈ Pe ⇐⇒ ~s ∈ DSi,~t ∈ DSj are dependent through edge e ∈ E (2.6)

The ability to capture the exact conditions on when a dependence exists through

linear equalities and inequalities rests on the fact that there exists a affine relation

between the iterations and the accessed data for regular programs. Equalities can be

18

2.3. Polyhedral Dependences

replaced by two inequalities (‘≥ 0’ and ‘≤ 0’) and everything can be converted to

inequalities in the ≥ 0 form, i.e., the polyhedron can be expressed as the intersection

of a finite number of non-negative half-spaces. Let the ith inequality after conversion

to such a form be denoted by P i
e. For the code shown in Figure 2.2, consider the

dependence between the write at A[i][j] from S1 and the read A[l][k] in S2. The

dependence polyhedron for this edge is shown in Figure 2.5.

In the next chapter, we see that the dependence polyhedra is the most important

structure around which the problem of finding legal and good transformations centers.

In particular, the Farkas lemma (Sec. 2.1) is applied for the dependence polyhedron.

A minor point to note here is that the dependence polyhedra we see are often integral

polyhedra, i.e., polyhedra that have integer vertices. Hence, the application of Farkas

lemma for it is exact and not conservative. Even when the dependence polyhedron

is not integral, i.e., when its integer hull is a proper subset of the polyhedron, the

difference between applying it to the integer hull and the entire polyhedron is highly

unlikely to matter in practice. If need be, one can construct the integer hull of the

polyhedron and apply the Farkas lemma on it.

2.3.2 Strengths of dependence polyhedra

The dependence polyhedra are a very general and accurate representation of

instance-wise dependences which subsume several traditional notions like distance

vectors (also called uniform dependences), dependence levels, and direction vectors.

Though a similar notion of exact dependences was presented by Feautrier [Fea91] for

value-based array dataflow analysis, this notion of dependence polyhedra has only

19

2.3. Polyhedral Dependences

been sharpened in the past few years by researchers [CGP+05, VBGC06, PBCV07]

and is not restricted to programs in single assignment form nor does it require con-

version to single-assignment form. Dependence abstractions like direction vectors or

distance vectors are tied to a particular syntactic nesting unlike dependence polyhedra

which is more abstract and captures the relation between integer points of polyhedra.

One could obtain weaker dependence representations from a dependence polyhedra.

for (t=0; t<tmax; t++) {
for (j=0; j<ny; j++)

ey [0][j] = t;
for (i=1; i<nx; i++)

for (j=0; j<ny; j++)
ey[i][j] = ey[i][j] − 0.5 (hz[i][j]−hz[i−1][j]);

for (i=0; i<nx; i++)
for (j=1; j<ny; j++)

ex[i][j] = ex[i][j] − 0.5 (hz[i][j]−hz[i][j−1]);
for (i=0; i<nx; i++)

for (j=0; j<ny; j++)
hz[i][j]=hz[i [j] −

0.7 (ex[i][j+1]−ex[i][j]+ey[i+1][j]−ey[i][j]);
}

Figure 2.6: An imperfect loop nest

0 ≤ t ≤ T − 1

0 ≤ t′ ≤ T − 1

0 ≤ i ≤ N − 1

0 ≤ j ≤ N − 1

0 ≤ i′ ≤ N − 1

0 ≤ j′ ≤ N − 1

t = t′ − 1

i = i′ − 1

j = j′

Figure 2.7: Dependence
polyhedron: S4(hz[i][j]) →
S2(hz[i− 1][j])

Another example. For the code shown in Figure 2.6, consider the flow dependence

between S4 and S2 from the write at hz[i][j] to the read at hz[i-1][j] (later time steps).

Let ~s ∈ DS4, ~t ∈ DS2, ~s = (t, i, j), ~t = (t′, i′, j′); then, Pe for this edge is shown in

Figure 2.7.

20

2.4. Polyhedral Transformations

Uniform and Non-uniform dependences. Uniform dependences traditionally

make sense for a statement in perfectly nested loop nest or two statements which

are in the same perfectly nested loop body. In such cases a uniform dependence

is a dependence where the source and target iteration in question are a constant

vector distance apart. Such a dependence is also called a constant dependence and

represented as a distance vector [Wol95].

For detailed information on polyhedral dependence analysis and a good survey of

older techniques in the literature including non-polyhedral ones, the reader can refer

to [VBGC06].

2.4 Polyhedral Transformations

A one-dimensional affine transform for statement S is an affine function defined by:

φS(~i) =
(

cS1 c
S
2 . . . cSmS

) (

~iS
)

+ cS0 (2.7)

=
(

cS1 c
S
2 . . . cSmS

cS0
)

(

~iS
1

)

where c0, c1, c2, . . . , cmS
∈ Z, ~i ∈ ZmS Hence, a one-dimensional affine transform

for each statement can be interpreted as a partitioning hyperplane with normal

(c1, . . . , cmS
). A multi-dimensional affine transformation can be represented as a se-

quence of such φ’s for each statement. We use a superscript to denote the hyperplane

for each level. φk
S represents the hyperplane at level k for statement S. If 1 ≤ k ≤ d,

all the φk
S can be represented by a single d-dimensional affine function TS given by:

TS
~iS =MS

~iS + ~tS (2.8)

21

2.4. Polyhedral Transformations

where MS ∈ Zd×mS , ~tS ∈ Zd.

TS(~i) =











φ1
S(~i)

φ2
S(~i)
...

φd
S(~i)











=











cS11 cS12 . . . cS1mS

cS21 cS22 . . . cS2mS

...
...

...
...

cSd1
cSd2

. . . cSdmS











~iS +











cS10
cS20
...
cSd0











(2.9)

Scalar dimensions. The dimensionality of TS, d, may be greater than mS as some

rows in TS serve the purpose of representing partially fused or unfused dimensions

at a level. Such a row has (c1, . . . , cmS
) = 0, and a particular constant for c0. All

statements with the same c0 value are fused at that level and the unfused sets are

placed in the increasing order of their c0s. We call such a level a scalar dimension.

Hence, a level is a scalar dimension if the φ’s for all statements at that level are

constant functions. Figure 2.8 shows a sequence of matrix-matrix multiplies and how

a transformation captures a legal fusion: the transformation fuses ji of S1 with jk of

S2; φ3 is a scalar dimension.

Complete scanning order. The number of rows inMS for each statements should

be the same (d) to map all iterations to a global space of dimensionality d. To provide

a complete scanning order for each statement, the number of linearly independent φS’s

for a statement should be the same as the dimensionality of the statement, mS, i.e.,

TS should have full column rank. Note that it is always possible to represent any

transformed code (any nesting) with at most 2m∗

S +1 rows, where m∗

S = maxS∈SmS.

Composition of simpler transformations. Multi-dimensional affine functions

capture a sequence of simpler transformations that include permutation, skewing,

22

2.4. Polyhedral Transformations

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {

for (k=0; k<n; k++) {
S1: C[i , j] = C[i,j] + A[i,k] B[k,j];
}

}
}
for (i=0; i<n; i++) {

for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
S2: D[i , j] = D[i,j] + E[i,k] C[k,j];
}

}
}

Original code

for (t0=0;t0<=N−1;t0++) {
for (t1=0;t1<=N−1;t1++) {

for (t3=0;t3<=N−1;t3++) {
C[t1,t0]=A[t1,t3] B[t3,t0]+C[t1,t0];

}
for (t3=0;t3<=N−1;t3++) {

D[t3,t0]=E[t3,t1] C[t1,t0]+D[t3,t0];
}

}
}

Transformed code

TS1
(~iS1

) =









0 1 0
1 0 0
0 0 0
0 0 1













i

j

k



+









0
0
0
0









TS2
(~iS2

) =









0 1 0
0 0 1
0 0 0
1 0 0













i

j

k



+









0
0
1
0









i.e.,

φ1
S1
= j φ1

S2
= j

φ2
S1
= i φ2

S2
= k

φ3
S1
= 0 φ3

S2
= 1

φ4
S1
= k φ4

S2
= i

Figure 2.8: Polyhedral transformation: an example

23

2.4. Polyhedral Transformations

reversal, fusion, fission (distribution), relative shifting, and tiling for fixed tile sizes.

Note that tiling cannot be readily expressed as an affine function on the original

iterators (~iS), but can be once supernodes are introduced into the domain increasing

its dimensionality: this is covered in detail in a general context in Chapter 5.

Traditional transformations like unimodular transformations [Ban93, Wol95] and

non-unimodular [Ram92, LP94, Ram95] ones were applied to a single perfect loop

nest in isolation. They are therefore subsumed. Due to the presence of scalar dimen-

sions, polyhedral transformations can be used to represent or transform to any kind

of nesting structure. Also, they map iterations of statements to a common multidi-

mensional space providing the ability to interleave iterations of different statements

as desired.

One can notice a one-to-one correspondence between the A, B, Γ representation

used for URUK/WRAP-IT [GVB+06] and the one we described above, except that

we have all coefficients in Γ set to zero, i.e., no parametric shifts. The motivation

behind this will be clear in the next two chapters. The above representation for

transformations was first proposed, though in different forms, by Feautrier [Fea92b]

and Kelly et al. [Kel96], but used systematically by viewing it in terms of three

components, A, B, and Γ only recently [CGP+05, GVB+06, Vas07].

The above notation for transformations directly fits with scattering functions that

a code generation tool like CLooG [Bas04a, Clo] supports. It refers to TS as a scatter-

ing function. On providing the original statement domains, DS, along with TS, Cloog

can scan the domains in the global lexicographic ordering imposed by TS(~iS) across

24

2.4. Polyhedral Transformations

all S ∈ S. The goal of automatic transformation is to find the unknown coefficients

of TS, ∀S ∈ S.

2.4.1 Why affine transformations?

Definition 11 (Convex combination). A convex combination of vectors, ~x1, ~x2,

. . . , ~xn, is of the form λ1~x1 + λ2~x2 + · · ·+ λn ~xn, where λ1, λ2, . . . , λn ≥ 0 and

∑n

i=1
λi = 1.

Informally, a convex combination of two points always lies on the line segment

joining the two points. In the general case, a convex combination of any number of

points lies inside the convex hull of those points.

The primary reason affine transformations are of interest is that affine transforma-

tions are the most general class of transformations that preserve the collinearity and

convexity of points in space, besides the ratio of distances. An affine transformation

transforms a polyhedron into another polyhedron and one stays in the polyhedral

abstraction for further analyses and most importantly for code generation. Code

generation is relatively easier and so has been studied extensively for affine trans-

formations. We now quickly show that if DS is convex, its image under the affine

function TS is also convex. Let the image be:

T (DS) =
{

~z | ~z = TS(~x), ~x ∈ D
S
}

Consider the convex combination of any two points, TS(~x) and TS(~y), of T (D
S):

λ1TS(~x) + λ2TS(~y), λ1 + λ2 = 1, λ1 ≥ 0, λ2 ≥ 0

25

2.4. Polyhedral Transformations

Now,

λ1TS(~x) + λ2TS(~y) = λ1MS(~x) + λ1
~tS + λ2MS(~y) + λ2

~tS

= MS(λ1~x+ λ2~y) + ~tS, (∵ λ1 + λ2 = 1)

= TS(λ1~x+ λ2~y) (2.10)

Since DS is convex, λ1~x+ λ2~y ∈ D
S. Hence, from (2.10), we have:

λ1TS(~x) + λ2TS(~y) ∈ T (DS)

⇒ T (DS) is convex

If MS (the linear part of TS) has full column rank, i.e., the rank of MS is mS, TS

is a one-to-one mapping from DS to T (DS). A point to note when looking at integer

spaces instead of rational or real spaces is that not every integer point in the rational

domain that encloses T (DS) may have an integer pre-image in DS, for example,

transformations that are non-unimodular may create sparse integer polyhedra. This

is not a problem since a code generator like Cloog can scan such sparse polyhedra by

inserting modulos. Note that just like convexity, affine transformations also preserve

the ratio of distances between points. Since integer points in the original domain are

equally spaced, they are so in the transformed space too. Techniques for removal

of modulos also exist [Vas07]. Hence, no restrictions need be imposed on the affine

function TS. Sparse integer polyhedra also correspond to code with non-unit strides.

However, these can be represented with an additional dimension as long as the stride

is a constant, for eg., as {0 ≤ i ≤ n−1, i = 2k} for i going from 0 to n−1 with stride

26

2.5. Putting the Notation Together

two. However, if one is interested, a more direct representation for integer points

in a polyhedron can be used [S.P00, GR07]. The term Z-polyhedron is associated

with such a representation which is the image of a rational polyhedron under an affine

integer lattice. Closure properties with such a representation under various operations

including affine image and pre-image have been proved [GR07].

2.5 Putting the Notation Together

Let us put together the notation introduced so far. Let the statements of the

program be S1, S2, . . . , Sm. Let S be the set of all statements. Let ~n be the vector

of program parameters, i.e., typically loop bounds or symbols appearing in the loop

bounds, access functions, or the statement body.

Let G = (V,E) be the data dependence graph of the original program, i.e., V = S

and E is the set of data dependence edges. eSi→Sj ∈ E denotes an edge from Si to

Sj , but we will often drop the superscript on e. For every edge e ∈ E from Si to

Sj , let the dependence polyhedron be Pe, the fact that a source iterations ~s ∈ D
Si

and a target iteration ~t ∈ DSj are dependent are known through the equalities and

inequalities in the dependence polyhedron, and we express this fact by:

〈~s,~t〉 ∈ Pe ⇐⇒ ~s ∈ DSi,~t ∈ DSj are dependent through edge eSi→Sj ∈ E

(2.11)

φk
Si
denotes the affine hyperplane or function for level k for Si, 1 ≤ k ≤ d. The

set of all φk
Si
, for Si ∈ S represent the interleaving of all statement instances at level

k. TS is a d-dimensional affine function for each S as defined in (2.9). The subscript

27

2.6. Legality and Parallelism

on φk is dropped when referring to the property of the function across all statements,

since all statements instances are mapping to a target space-time with dimensions

φ1, φ2, . . . , φd.

2.6 Legality and Parallelism

Dependence satisfaction. A dependence edge e with polyhedron Pe is satisfied

at a level l iff l is the first level at which the following condition is met:

∀k(1 ≤ k ≤ l − 1) : φk
Sj

(

~t
)

− φk
Si
(~s) ≥ 0

∧

φl
Sj

(

~t
)

− φl
Si
(~s) ≥ 1, 〈~s,~t〉 ∈ Pe

Legality. Statement-wise affine transformations (TS) as defined in (2.9) are legal iff

TSj
(~t)− TSi

(~s) ≻ ~0d, 〈~s,~t〉 ∈ Pe, ∀e ∈ E (2.12)

Definition 12 (Permutable band). The φs at levels p, p+1, . . . , p+ s− 1 form a

permutable band of loops in the transformed space iff

∀k (p ≤ k ≤ p+ s− 1) : φk
Sj
(~t)− φk

Si
(~s) ≥ 0, 〈~s,~t〉 ∈ Pe, e ∈ Ep (2.13)

where Ep is the set of dependences not satisfied up to level p− 1.

The above directly follows from (2.12). Loops within a permutable band can be

freely interchanged or permuted among themselves. One can see that doing so will not

violate (2.12) since dependence components for all unsatisfied dependences are non-

negative at each of the dimensions in the band. We will later find the above definition

a little conservative. Its refinement and associated intricacies will be discussed in

Section 5.4.2 of Chapter 5.

28

2.6. Legality and Parallelism

Definition 13 (Outer parallel). A {φS1, φS2, . . . , φSm
} is an outer parallel hyper-

plane if and only if

φSj
(~t)− φSi

(~s) = 0, 〈~s,~t〉 ∈ Pe, ∀e ∈ E

Outer parallelism is also often referred to as communication-free parallelism or

synchronization-free parallelism.

for (i=0; i<N; i++) {
for (j=0; j<N; j++) {

a[i][j] = a[i][j−1] + 1;
}

}

j

i

N

N

0 1 2 3

1

2

3

Figure 2.9: Outer parallel loop, i: hy-
perplane (1,0)

for (i=0; i<N; i++) {
for (j=0; j<N; j++) {

a[i][j] = a[i−1][N−1−j] + 1;
}

}

j

i

N

N

0 1 2 3

1

2

3

Figure 2.10: Inner parallel loop, j: hy-
perplane (0,1)

Definition 14 (Inner parallel). A {φk
S1, φ

k
S2, . . . , φ

k
Sm
} is an inner parallel hyper-

plane if and only if φk
Si
(~t)− φk

Si
(~s) = 0, for every 〈~s,~t〉 ∈ Pe, e ∈ Ek, where Ek is the

set of dependences not satisfied up to level k − 1.

29

2.6. Legality and Parallelism

It is illegal to move an inner parallel loop in the outer direction since the depen-

dences satisfied at loops it has been moved across may be violated at the new position

of the moved loop. However, it is always legal to move an inner parallel loop further

inside.

for (i=0; i<N; i++) {
for (j=0; j<N; j++) {

a[i][j] = a[i][j−1] + a[i−1][j];
}

}
j

i

N

N

0 1 2 3

1

2

3

Figure 2.11: Pipelined parallel loop: i or j

Outer and inner parallelism is often referred to as doall parallelism. However, note

that inner parallelism requires synchronization every iteration outer to the loop.

Pipelined parallelism. Two or more loops may have dependences that have de-

pendence components along each of them can still be executed in parallel if one of

them can be delayed with respect to the other by a fixed amount. If dependence

components are non-negative along each of the dimensions in question, one just needs

a delay of one. Figure 2.11 shows a code with dependences along both i and j. How-

ever, say along i, successive iterations can start with a delay of one and continue

executing iterations for j’s in sequence. Similarly, if there are n independent dimen-

sions, at most n− 1 of them can be pipelined while iterations along at least one will

30

2.6. Legality and Parallelism

be executed in sequence. Pipelined parallelism is also often referred to as doacross

parallelism. We will formalize conditions for this in a very general setting in Chap-

ter 3 since it is goes together with tiling. Code generation for pipelined parallelism is

discussed in Chapter 5.

Space-time mapping. Once properties of each row of TS are known, some of

them can be marked as space, i.e., a dimension along which iterations are executed

by different processors, while others can be marked as time, i.e., a dimension that is

executed sequentially by a single processor. Hence, TS specifies a complete space-time

mapping for S. Each of the d dimensions is either space or time. Since MS is of full

column rank, when an iteration executes and where it executes, is known. However,

in reality, post-processing can be done to TS before such a mapping is achieved.

31

