
COMP 515: Advanced Compilation
for Vector and Parallel Processors

Prof. Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 10 29 September 2015

COMP 515, Fall 2015 (V.Sarkar)2

Homework #3 (REMINDER)
1. Solve exercise 5.6 in book

— Your solution should be legal for all values of K (note that the value of K
is invariant in loop I)

Exercise 5.6: What vector code should be generated for the
following loop?
DO I = 1, 100
 A(I) = B(K) + C(I)
 B(I+1) = A(I) + D(I)
END DO

•  Due on Oct 8th

COMP 515, Fall 2015 (V.Sarkar)3

Recap
•  More transformations to expose more fine-grained parallelism

— Node Splitting
— Recognition of Reductions
— Index-Set Splitting
— Run-time Symbolic Resolution
— Loop Skewing

•  Unified framework to generate vector code
•  Note: these transformations are useful for generating other

forms of parallel code as well (beyond vector)

Previous lecture

This lecture

COMP 515, Fall 2015 (V.Sarkar)4

Run-time Symbolic Resolution
•  “Breaking Conditions”

DO I = 1, N

A(I+L) = A(I) + B(I)

ENDDO

Transformed to..

IF(L.LE.0 .OR. L.GT.N) THEN

A(L+1:N+L) = A(1:N) + B(1:N)

ELSE

DO I = 1, N

 A(I+L) = A(I) + B(I)

ENDDO

ENDIF

COMP 515, Fall 2015 (V.Sarkar)5

Run-time Symbolic Resolution
•  Identifying minimum number of breaking conditions to break a

recurrence is NP-hard
— NOTE: in practice, this can be more important for conditions

related to pointer aliasing than for array subscripts

•  Heuristic:
— Identify when a critical dependence can be conditionally eliminated

via a breaking condition

COMP 515, Fall 2015 (V.Sarkar)6

Loop Skewing

•  Reshape Iteration Space to uncover parallelism

DO I = 1, N

DO J = 1, N

(=,<)

S: A(I,J) = A(I-1,J) + A(I,J-1)

(<,=)

ENDDO

ENDDO

•  Parallelism not apparent at loop level, and
interchange doesn’t help

COMP 515, Fall 2015 (V.Sarkar)7

Loop Skewing
•  Dependence Pattern before loop skewing

COMP 515, Fall 2015 (V.Sarkar)8

Loop Skewing
•  Do the following transformation called loop skewing

jj=J+I or J=jj-I

DO I = 1, N

DO jj = I+1, I+N

 J = jj - I (=,<)

S: A(I,J) = A(I-1,J) + A(I,J-1)

(<,<)

ENDDO

ENDDO

Note: Direction Vector Changes, but statement body remains the same

(Examples in textbook usually copy propagate J=jj-I in all uses of J)

COMP 515, Fall 2015 (V.Sarkar)9

Loop Skewing
•  Dependence pattern after loop skewing

— NOTE: Replace j by jj in figure below

. . .

COMP 515, Fall 2015 (V.Sarkar)10

Loop Skewing
DO I = 1, N ! DV = { (<,<), (=, <) }

DO jj = I+1, I+N

S: A(I,jj-I) = A(I-1,jj-I) + A(I,jj-I-1)

ENDDO

ENDDO

Loop interchange to..

DO jj = 2, N+N ! DV = { (<,<), (<, =) }

DO I = max(1,jj-N), min(N,jj-1)

S: A(I,jj-I) = A(I-1,jj-I) + A(I,jj-I-1)

ENDDO

ENDDO

Vectorize to..

DO jj = 2, N+N

FORALL I = max(1,jj-N), min(N,jj-1)

S: A(I,jj-I) = A(I-1,jj-I) + A(I,jj-I-1)

END FORALL

ENDDO

COMP 515, Fall 2015 (V.Sarkar)11

Loop Skewing
•  Disadvantages:

— Varying vector length
–  Not profitable if N is small

— If vector startup time is more than speedup time, this is not profitable
— Vector bounds must be recomputed on each iteration of outer loop

•  Apply loop skewing if everything else fails

•  We will later study Unimodular and Polyhedral transformations, which
include generalizations of loop skewing

COMP 515, Fall 2015 (V.Sarkar)12

Chapter 5: Putting It All Together
•  Good Part

— Many transformations imply more choices to exploit parallelism

•  Bad Part
— Choosing the right transformation
— How to automate transformation selection process?
— Interference between transformations

COMP 515, Fall 2015 (V.Sarkar)13

Putting It All Together
•  Example of Interference

DO I = 1, N

DO J = 1, M

S(I) = S(I) + A(I,J)

ENDDO

ENDDO

Sum Reduction gives..

DO I = 1, N

S(I) = S(I) + SUM (A(I,1:M))

ENDDO

While Loop Interchange and Vectorization gives..

DO J = 1, N

S(1:N) = S(1:N) + A(1:N,J)

ENDDO

COMP 515, Fall 2015 (V.Sarkar)14

Putting It All Together
•  Any algorithm which tries to tie all transformations must

— Take a global view of transformed code
— Know the architecture of the target machine

•  Goal of our algorithm
— Finding ONE good vector loop in each loop nest [works well for most

vector register architectures]

COMP 515, Fall 2015 (V.Sarkar)15

Unified Framework
•  Detection: finding ALL loops for EACH statement that can be

run in vector
•  Selection: choosing best loop for vector execution for EACH

statement
•  Transformation: carrying out the transformations necessary to

vectorize the selected loop

•  See Section 5.10 for details

COMP 515, Fall 2015 (V.Sarkar)16

Performance on Benchmarks

PFC = Parallel Fortran Converter tool developed at Rice by Allen & Kennedy

COMP 515, Fall 2015 (V.Sarkar)17

Test 171: One example that PFC was
unable to vectorize

DO I = 1, N
A(I*N) = A(I*N) + B(I)

ENDDO

COMP 515, Fall 2015 (V.Sarkar)18 1
8

Coarse-Grain Parallelism

Chapter 6 of Allen and Kennedy

COMP 515, Fall 2015 (V.Sarkar)19

Introduction

•  Previously, our transformations
targeted vector and superscalar
architectures.
•  In Chapter 6, we worry about
transformations for symmetric
multiprocessor (multicore) machines.
•  The difference between these
transformations tends to be one of
granularity.

COMP 515, Fall 2015 (V.Sarkar)20

p1

Memory

Bus

p2 p3 p4

Review
•  SMP machines have multiple

processors all accessing a
central memory.

•  The processors are
unrelated, and can run
separate processes.

•  Starting processes and
synchonrization between
proccesses is expensive.

COMP 515, Fall 2015 (V.Sarkar)21

Synchronization
•  A basic synchronization element is the barrier at the end of a

parallel loop.
•  A barrier in a program forces all processes to reach a certain

point before execution continues.
•  Bus contention can cause slowdowns.

COMP 515, Fall 2015 (V.Sarkar)22

Techniques for parallelizing a single
loop

•  Single loop methods
— Privatization
— Loop distribution
— Loop fusion
— Alignment
— Code replication

COMP 515, Fall 2015 (V.Sarkar)23

 DO I = 1,N

S1 T = A(I)

S2 A(I) = B(I)

S3 B(I) = T

 ENDDO

 PARALLEL DO I = 1,N

 PRIVATE t

S1 t = A(I)

S2 A(I) = B(I)

S3 B(I) = t

 ENDDO

Single Loops
•  The analog of scalar expansion is privatization.
•  Temporaries can be given separate namespaces for each

iteration.

COMP 515, Fall 2015 (V.Sarkar)24

Definition: A scalar variable x in a loop L is said to be
privatizable if every path from the loop entry to a use
of x inside the loop passes through a definition of x.

Privatizability can be stated as a data-flow problem:

We can also do this by declaring a variable x private if its
SSA graph doesn’t contain a phi function at the entry.

up(x) = use(x)∪ (!def (x)∩ up(y))
y∈succ(x)
U

private(L) =!up(entry)∩ (def (y))
y∈L
U

Privatization

COMP 515, Fall 2015 (V.Sarkar)25

Course Schedule
•  No class on October 1 and October 8
•  Individual project meetings will be scheduled during Oct 12-13

