COMP 515: Advanced Compilation
for Vector and Parallel Processors

Prof. Vivek Sarkar

Department of Computer Science
Rice University
vsarkar®@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 11 6 October 2015

Homework #3 (REMINDER)

1. Solve exercise 5.6 in book

—Your solution should be legal for all values of K (note that the value of K
is invariant in loop I)

Exercise 5.6: What vector code should be generated for the
following loop?

DOI-=1,100
A(T) = B(K) + C(I)
B(I+1) = A(T) + D(T)
END DO

* Due on Oct 8th

2 COMP 515, Fall 2015 (V.Sarkar)

Coarse-Grain Parallelism (contd)

Chapter 6 of Allen and Kennedy

* Acknowledgment: Slides from previous offerings of COMP 515

by Prof. Ken Kennedy
—http://www.cs.rice.edu/~ken/comp515/

COMP 515, Fall 2015 (V.Sarkar)

Scalar Privatization (Recap)

* The analog of scalar expansion is privatization.

* Temporaries can be given separate namespaces for each
iteration.

DO I = 1,N PARALLEL DO I = 1,N
s1 T = A(I) PRIVATE t
S2 A(I) = B(I) s1 t = A(I)
S3 B(I) = T S2 A(I) = B(I)
ENDDO S3 B(I) = t
ENDDO

COMP 515, Fall 2015 (V.Sarkar)

Array Privatization

* Array variables can be privatized as well (but the underlying
analysis can be more complicated than for scalars)

DO I = 1,100 PARALLEL DO I = 1,100
S0 T(1)=X PRIVATE t(N)
L1 DO J = 2,N SO t(1l) = X
S1 T(J) = T(J-1)+B(I,J) ﬁ L1 DO J = 2,N
S2 A(I,J) = T(J) S1 t(J) = t(J-1)+B(I,J)

ENDDO S2 A(I,J)=t(J)
ENDDO ENDDO
ENDDO

5 COMP 515, Fall 2015 (V. Sarkar)

Loop Distribution

* As we saw in Chapter 5, loop distribution can convert loop-
carried dependences to loop-independent dependences.

* Consequently, it often creates opportunity for outer-loop
parallelism.

* However, we must add extra barriers to keep distributed loops
from executing out of order, so the overhead may override the
parallel savings.

COMP 515, Fall 2015 (V.Sarkar)

Loop Alignment

Many carried dependencies are due to array alignment issues.

If we can align all references, then dependencies would go
away, and loop-level parallelism can be exposed.

This is also related to Software Pipelining
DO I = 1,N ! Aligned loop

DO I = 2,N

A(I)
D(I)

ENDDO

B(I)+C(I)
A(I-1)*2.0

IF (I .GT. 1) A(I) = B(I)+C(I)

IF (I .LT. N) D(I+l) =

ENDDO
D(2) = A(1)*2.0
DO I = 2,N-1 ! Pipelined loop
A(I) = B(I)+C(I)
D(I+1) = A(I)*2.0
ENDDO
A(N) = B(N)+C(N)

COMP 515, Fall 2015 (V.Sarkar)

A(I)*2.0

Code Replication

* If two dependences between the same statements have
different dependence distances, then alignment doesn’t help.

* We can fix the second case by replicating code:

DO I = 1,N
DO T = 1,N A(I+1l) = B(I)+C
! Replicated Statement
A(I+1) = B(I)+C IF (I .EQ 1) THEN
X(I) = A(I+1)+A(I) t = A(I)
ELSE
ENDDO t = B(I-1)+C
END IF
X(I) = A(I+1)+t
ENDDO

8 COMP 515, Fall 2015 (V.Sarkar)

Strip Mining

* Converts available parallelism into a form more suitable for the
hardware

* Assume THRESHOLD = minimum iters for parallel loop (due to
overhead reasons)

DOI-=1,N
A(T) = A(T) + B(T)
ENDDO

"
]
v

k = MAX(THRESHOLD, CEIL (N / P))
PARALLELDO I = 1, N, k
DO i = I, MINC + k-1, N)
AG) = A(i) + B(i)
ENDDO
END PARALLEL DO

COMP 515, Fall 2015 (V.Sarkar)

10

Loop Fusion

Lolop distribution was a method for separating parallel parts of
a loop.

Our solution in Section 5 attempted to find the maximal loop
distribution.

The maximal distribution often finds parallelizable components
too small for efficient coarse-grain parallelism.

Two obvious solutions:

— Strip mine large loops to create larger granularity (with an outer
parallel loop and inner sequential loop)

— Perform maximal distribution, and then fuse together parallelizable
loops.

— Both solutions can be combined as well.

COMP 515, Fall 2015 (V.Sarkar)

Fusion Safety: Fusion-Preventing
Loop-Independent Dependences

Definition: A loop-independent dependence between statements S1 and
S2 in loops L1 and L2 respectively is fusion-preventing if fusing L1 and
L2 causes the dependence to be carried by the combined loop in the
opposite direction.

Example of an illegal loop fusion:

DO I = 1,N
S1 A(I) = B(I)+C DO I = 1,N
ENDDO j‘> S1 A(I) = B(I)+C
DO I = 1,N S2 D(I) = A(I+1)+E
S2 D(I) = A(I+1)+E ENDDO
ENDDO

COMP 515, Fall 2015 (V.Sarkar)

Fusion Safety: Ordering Constraint

* We shouldn’t fuse loops if the fusion will result in an illegal
ordering of the dependence graph.

* Ordering Constraint: Two loops can’t be legally fused if there
exists a path of loop-independent dependencies between them
containing a loop or statement not being fused with them i.e.,
if fusion will result in a cycle in the resulting loop-independent
dependences

Fusing L1 with L3 violates the
ordering constraint. {L1,L3}
must occur both before and

‘ after the node L2, which is not
Q possible.

12 COMP 515, Fall 2015 (V.Sarkar)

13

Fusion Profitability

Parallel loops should generally
not be merged with sequential
loops.

Definition: An edge between two

statements in loops L1 and L2
respectively is said to be
parallelism-inhibiting if after
merging L1 and L2, the
dependence is carried by the
combined loop.

S1

S2

DO I = 1,N

A(I+1) = B(I) + C
ENDDO
DO I = 1,N

D(I) = A(I) + E
ENDDO

S1
S2

DO I = 1,N
A(I+1) = B(I) + C
D(I) = A(I) + E

ENDDO

COMP 515, Fall 2015 (V.Sarkar)

14

Typed Fusion

We start by classifying loops into two types: parallel and
sequential.

We next gather together all edges that inhibit efficient fusion,
(i.e., that connect a sequential and a parallel loops) and call
them “bad edges”.

Given a graph of loop-independent dependences (V,E), we want
to obtain a graph (V' ,E’) by merging vertices of V subject to
the following constraints:

— Bad Edge Constraint: vertices joined by a bad edge aren’ t fused.

— Ordering Constraint: vertices joined by path containing non-
parallel vertex aren’t fused

COMP 515, Fall 2015 (V.Sarkar)

Typed Fusion Example

Original loop graph
@ ()
e J=
@ (0
&

After fusing parallel loops After fusing sequential loops

15 COMP 515, Fall 2015 (V.Sarkar)

162-28¢ Sabed ‘(YVdS) seiniosuyoly
pue swyilob)y |9|eted uo wnisodwAs NOV 2661 94yl Jo sbulpaadoid

Optimal Weighted Loop Fusion
for Parallel Programs

Nimrod Megiddo

IBM Almaden Research Center

Vivek Sarkar

MIT Laboratory for Computer Science

Proceedings of the 1997 ACM Symposium on Parallel Algorithms and Architectures (SPAA), Pages 282-291

Motivation

e Loop fusion is an important program transformation for
scientific applications and stream-based applications

e [he weighted loop fusion optimization problem is NP-hard

e Approximation solutions are hard because weights can be
arbitrary and the program graph has no special structure

e Problem sizes are not very large in practice (< 100 nodes)

e Computers are 1000x faster now compared to when
NP-hardness was introduced

= QOur goal is to find optimal solutions in a tractable way
2

Loop Dependence Graph (LDG)

e The LDG is a directed acyclic dependence graph (built for
a region of acyclic control flow across loop nests).

e Node = loop nest.

e Edge = data dependence from source node to destination
node.

e Each LDG edge is marked as contractable or
noncontractable.

The source and destination loop nests of a noncontractable
edge cannot be fused (otherwise a data dependence will be
violated or a parallel loop will be serialized).

Example program

10

20

30

40

50

60

PARDO 10
A(T)
PARDO 20
B(I)
C(I)
PARDO 30
D(I)
PARDO 40
E(I)
PARDO 50
F(I)
G(I)
PARDO 60
H(I)

H

=1, N

A(I)*2 + 3

B(I) + 99

=1, N

A(N-I+1) + A(I)
=1, N

B(I) + C(I) * D(I)
=1, N

B(I)*x4 + 2
E(I)*8 - F(I)
=1, N

F(I) + G(I) * E(I-1)

LDG for example program

— = Contractable dependence
—X% ™ Noncontractable dependence

Fusion Partition

Fusion partition = partition of LDG nodes into disjoint fusion
clusters

Fusion cluster = set of loop nests to be fused together

A fusion partition is legal if and only if:

1. The source and destination nodes of each noncontractable
edge are placed in distinct clusters, and

2. The reduced graph is acyclic

Examples of Fusion Partitions

— = Contractable dependence
—X% ™ Noncontractable dependence

Cost of a Fusion Partition

Define w;; = weight of pair of nodes, 7 and j

cost savings obtained by fusing nodes ¢ and j

= cost of fusion partion P is given by

F(P)= > w;
P(1)#P(5)
where P(i) = cluster number for node 7 in fusion partition P.

Cost of fusion partition = sum of inter-cluster w;; weights

9

Computing Weights

Examples of computing weights in different applications of
weighted |loop fusion:

e Common Loads: set w;; = number of common values in
load instructions in loop nests ¢z and j

e Cache Locality: set w;; = number of common cache lines
accessed by loop nests 72 and 3

e Remote data accesses: set w;; = number (and size) of
common remote data access in loop nests : and j

10

Example of Cost of a Fusion Partition

Summary arcs for LDG from Figure 2.

L ARUT

1 2 3 4 5 6
0|1]10]0]0]0
1({011]12]|1]0
011|010 |0
0121110120
011|012 |0]2
gl1o]0 2|0

Table of weights, w; = W

11

Problem Statement for Optimal Weighted Loop Fusion

Given an LDG and weights for pairs of nodes, find a legal
fusion partition P with minimum cost, F(P).

The optimized fusion configuration is obtained by fusing all

loops belonging to the same cluster, and generating the fused
loops in a topological sort order of the reduced LDG.

12

A Simple Integer Programming Formulation

e Introduce (0,1)-variables z;; such that z;; = 0 means that
LDG nodes ¢ and 5 are placed in the same cluster

e Contractability constraint: z;; = 1 if there is a
noncontractable LDG edge from node i to node j

e Transitivity constraint: z;;, < x;; + =

e Introduce integer variables m; such that =; represents a
topologically sorted cluster numbering of LDG nodes

e Equivalence constraint: If z;; = 0 then m; = m;. This
constraint can be rewritten as —n - x;; < m; — m; < n - Ty

e Acyclicity constraint: If there is an LDG edge from : to j,
then Ljj < T — T

13

A Simple Integer Programming Formulation (contd.)

I\/Ilnlmlze Z Wi L
(¢,5)eBUC
subject to Tip < Xij T Zj VYV nodes i, 73,k

Ljj < T — T V arcs (Z,j)

—n-ajijéﬂ'j—ﬂ'i V nodes 1,

Wj—ﬁién-xij vV nodes 1,
ri;i =1 YV noncontractable arcs (4, 75)
r;; €10,1} vV nodes i,

where C C A is the set of contractable arcs and B is the set of
unordered node pairs with nonzero weights

This formulation has O(|N|2) variables and O(|N|3|)
constraints

14

More Efficient Formulation

Observations:

e The x; < x;; + x;; triangular inequalities can be dropped
without changing the set of feasible solutions.

e We only need to maintain z;; variables for (i,5) € BUC

e We only need the z;; < m; — m; inequalities for contractable
arcs i.e., for (3,7) € C

e We only need the —n - xz;; < m; — m; inequalities for unordered
node pairs with nonzero weights i.e., for {i,j} € B

15

More Efficient Formulation (contd.)

I\/Iinixrprize Z Wi T
(i,7)eBUC
subject to z;; <m; —m; < n-x;; V contractable arcs (4, 5)
—n iy <mj—m < newgg V unordered node pairs (¢,7)
with nonzero weight
i —m > 1 vV noncontractable arcs (3,5)
r;j € 10,1} ((¢,7) e BUC) .

This formulation has (|N|+ |B| + |C|) variables and
(2|C| + 2|B| + |NC|) constraints.

16

Example of More Efficient Formulation

Minimize 23 + (212 + 2224 + =25 + 234 + 2245 + 2256)

subject to
12 <mp — 71 <6212 3 —m > 1
To4 STy — 72 < 6 - T24 T4 — 71 21
L5 S5 — M2 < 6 - 225 e — T4 2> 1

34 <4 — 73 <6234
r45 <5 — 74 < 6 - 245
r56 <me — 75 < 6 - T56
—6 203 <3 — 72 < 6723

Efficient formulation has 12 variables and 17 constraints

(Simple formulation has 18 variables and 99 constraints)

17

Optimal Weighted Loop Fusion solution for Example

P =1|2,3,45]|6 (cost = 3)

Summary arcs for LDG from Figure 2.

AT

1 2 3 4 5 6
0|1]10]0]0]0
11011121 |0
01|01 |0 1|0
01211101210
011102 |0 |2
glojojo|z |0

Table of weights, w; = W

18

Optimal Weighted Loop Fusion solution for Example

(contd.)
PARDO 10 I =1, N
10 A(I) = E(I-1)
PARDO 20 I = 1, N
B(I) = A(I)*2 + 3
C(I) = B(I) + 99
D(I) = A(N-I+1) + A(I)
E(I) = B(I) + C(I) * D(I)
F(I) = B(I)*4 + 2
50 G(I) = E(I)*8 - F(I)
PARDO 60 I =1, N
60 H(I) = F(I) + G(I) * E(I-1)

19

Preliminary Experimental Results

Source Total | Time for total
of LDG n | |B|||A]| | |C| | # iters | # iters (OSL)
Example 6 1 9 6 15 0.080 seconds
034.mdljdp2 | 12 O |12] 9 19 0.050 seconds
Svynthetic 100 O | 90 | 80 60 0.140 seconds

Execution times for solving optimal weighted loop fusion
problems using the IBM Optimization Subroutine Library on a
33MHz RS/6000 model 220 workstation.

20

Extensions

e Cost term proportional to no. of clusters — extend
objective function to

F(P)=) wj + S x (no. of clusters)
P()ZP(j5)
where S is the synchronization cost incurred per cluster

e Conformability classes — equivalence classes such that
only nodes from within the same class are allowed to be
fused.

Conformability classes can be used to model non-loop
statements, loops with nonconformable bounds, loops with
premature exits, etc.

21

Extensions (contd.)

e Hierarchical fusion — apply algorithm recursively on LDG
for the body of each fused loop.

e Control dependences — extend LDG to be an acyclic
PDG. Each control dependence edge is noncontractable.

e Branch-and-bound method — compute bounds using
linear programming relaxation described in paper.

Branch-and-bound method automatically stores the best
feasible solution seen till current point in time, and can be
more efficient than using an optimization library.

22

Related Work

e [Allen & Cocke ’'72] Introduced loop fusion
transformation.

e [Goldberg & Paige '84] Showed how loop fusion can be
used to optimize stream processing in database queries.

e [Callahan '87] Greedy merge algorithm for unweighted
loop fusion (minimizing the number of clusters).

e [Gao et al '92] Heuristic solution to weighted loop fusion
using repeated applications of max-flow min-cut algorithm

e [Kennedy & McKinley '93] NP-hardness proof for
weighted loop fusion. Experimental results show 4—-17%
improvement in uniprocessor execution times with heuristic
algorithm.

23

Conclusions

e Presented an integer programming formulation for weighted
loop fusion

e Size of formulation is linear in size of LDG and weights

e Preliminary execution time measurements show that
optimal weighted loop fusion is tractable to solve in practice

24

Future Work

e Extend prototype implementation by making calls to
optimization subroutine library from within the compiler

e Compare performance of heuristic and optimal solutions on
Fortran 90 programs for SMPs

e Extend weighted loop fusion model by adding capacity
constraints

e Extend branch-and-bound algorithm with incremental
recomputation of edge weights

e Investigate development of tractable optimal algorithms for
other NP-hard problems in compiler optimization

25

