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Homework #3 (REMINDER)

1. Solve exercise 5.6 in book

—Your solution should be legal for all values of K (note that the value of K
is invariant in loop I)

Exercise 5.6: What vector code should be generated for the
following loop?

DOI-=1,100
A(T) = B(K) + C(I)
B(I+1) = A(T) + D(T)
END DO

* Due on Oct 8th
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Coarse-Grain Parallelism (contd)

Chapter 6 of Allen and Kennedy

* Acknowledgment: Slides from previous offerings of COMP 515

by Prof. Ken Kennedy
—http://www.cs.rice.edu/~ken/comp515/
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Scalar Privatization (Recap)

* The analog of scalar expansion is privatization.

* Temporaries can be given separate namespaces for each
iteration.

DO I = 1,N PARALLEL DO I = 1,N
s1 T = A(I) PRIVATE t
S2 A(I) = B(I) s1 t = A(I)
S3 B(I) = T S2 A(I) = B(I)
ENDDO S3 B(I) = t
ENDDO
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Array Privatization

* Array variables can be privatized as well (but the underlying
analysis can be more complicated than for scalars)

DO I = 1,100 PARALLEL DO I = 1,100
S0 T(1)=X PRIVATE t(N)
L1 DO J = 2,N SO t(1l) = X
S1 T(J) = T(J-1)+B(I,J) ﬁ L1 DO J = 2,N
S2 A(I,J) = T(J) S1 t(J) = t(J-1)+B(I,J)

ENDDO S2 A(I,J)=t(J)
ENDDO ENDDO
ENDDO
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Loop Distribution

* As we saw in Chapter 5, loop distribution can convert loop-
carried dependences to loop-independent dependences.

* Consequently, it often creates opportunity for outer-loop
parallelism.

* However, we must add extra barriers to keep distributed loops
from executing out of order, so the overhead may override the
parallel savings.
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Loop Alignment

Many carried dependencies are due to array alignment issues.

If we can align all references, then dependencies would go
away, and loop-level parallelism can be exposed.

This is also related to Software Pipelining
DO I = 1,N ! Aligned loop

DO I = 2,N

A(I)
D(I)

ENDDO

B(I)+C(I)
A(I-1)*2.0

IF (I .GT. 1) A(I) = B(I)+C(I)

IF (I .LT. N) D(I+l) =

ENDDO
D(2) = A(1)*2.0
DO I = 2,N-1 ! Pipelined loop
A(I) = B(I)+C(I)
D(I+1) = A(I)*2.0
ENDDO
A(N) = B(N)+C(N)
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Code Replication

* If two dependences between the same statements have
different dependence distances, then alignment doesn’t help.

* We can fix the second case by replicating code:

DO I = 1,N
DO T = 1,N A(I+1l) = B(I)+C
! Replicated Statement
A(I+1) = B(I)+C IF (I .EQ 1) THEN
X(I) = A(I+1)+A(I) t = A(I)
ELSE
ENDDO t = B(I-1)+C
END IF
X(I) = A(I+1)+t
ENDDO
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Strip Mining

* Converts available parallelism into a form more suitable for the
hardware

* Assume THRESHOLD = minimum iters for parallel loop (due to
overhead reasons)

DOI-=1,N
A(T) = A(T) + B(T)
ENDDO

"
]
v

k = MAX(THRESHOLD, CEIL (N / P))
PARALLELDO I = 1, N, k
DO i = I, MINC + k-1, N)
AG) = A(i) + B(i)
ENDDO
END PARALLEL DO
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Loop Fusion

Lolop distribution was a method for separating parallel parts of
a loop.

Our solution in Section 5 attempted to find the maximal loop
distribution.

The maximal distribution often finds parallelizable components
too small for efficient coarse-grain parallelism.

Two obvious solutions:

— Strip mine large loops to create larger granularity (with an outer
parallel loop and inner sequential loop)

— Perform maximal distribution, and then fuse together parallelizable
loops.

— Both solutions can be combined as well.
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Fusion Safety: Fusion-Preventing
Loop-Independent Dependences

Definition: A loop-independent dependence between statements S1 and
S2 in loops L1 and L2 respectively is fusion-preventing if fusing L1 and
L2 causes the dependence to be carried by the combined loop in the
opposite direction.

Example of an illegal loop fusion:

DO I = 1,N
S1 A(I) = B(I)+C DO I = 1,N
ENDDO j‘> S1 A(I) = B(I)+C
DO I = 1,N S2 D(I) = A(I+1)+E
S2 D(I) = A(I+1)+E ENDDO
ENDDO
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Fusion Safety: Ordering Constraint

* We shouldn’t fuse loops if the fusion will result in an illegal
ordering of the dependence graph.

* Ordering Constraint: Two loops can’t be legally fused if there
exists a path of loop-independent dependencies between them
containing a loop or statement not being fused with them i.e.,
if fusion will result in a cycle in the resulting loop-independent
dependences

Fusing L1 with L3 violates the
ordering constraint. {L1,L3}
must occur both before and

‘ after the node L2, which is not
Q possible.
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Fusion Profitability

Parallel loops should generally
not be merged with sequential
loops.

Definition: An edge between two

statements in loops L1 and L2
respectively is said to be
parallelism-inhibiting if after
merging L1 and L2, the
dependence is carried by the
combined loop.

S1

S2

DO I = 1,N

A(I+1) = B(I) + C
ENDDO
DO I = 1,N

D(I) = A(I) + E
ENDDO

S1
S2

DO I = 1,N
A(I+1) = B(I) + C
D(I) = A(I) + E

ENDDO
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Typed Fusion

We start by classifying loops into two types: parallel and
sequential.

We next gather together all edges that inhibit efficient fusion,
(i.e., that connect a sequential and a parallel loops) and call
them “bad edges”.

Given a graph of loop-independent dependences (V,E), we want
to obtain a graph (V' ,E’) by merging vertices of V subject to
the following constraints:

— Bad Edge Constraint: vertices joined by a bad edge aren’ t fused.

— Ordering Constraint: vertices joined by path containing non-
parallel vertex aren’t fused
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Typed Fusion Example

Original loop graph
@ ()
e J=
@ (0
&

After fusing parallel loops After fusing sequential loops
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Motivation

e Loop fusion is an important program transformation for
scientific applications and stream-based applications

e [ he weighted loop fusion optimization problem is NP-hard

e Approximation solutions are hard because weights can be
arbitrary and the program graph has no special structure

e Problem sizes are not very large in practice (< 100 nodes)

e Computers are 1000x faster now compared to when
NP-hardness was introduced

= QOur goal is to find optimal solutions in a tractable way
2



Loop Dependence Graph (LDG)

e The LDG is a directed acyclic dependence graph (built for
a region of acyclic control flow across loop nests).

e Node = loop nest.

e Edge = data dependence from source node to destination
node.

e Each LDG edge is marked as contractable or
noncontractable.

The source and destination loop nests of a noncontractable
edge cannot be fused (otherwise a data dependence will be
violated or a parallel loop will be serialized).



Example program
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PARDO 10
A(T)
PARDO 20
B(I)
C(I)
PARDO 30
D(I)
PARDO 40
E(I)
PARDO 50
F(I)
G(I)
PARDO 60
H(I)

H

=1, N

A(I)*2 + 3

B(I) + 99

=1, N

A(N-I+1) + A(I)
=1, N

B(I) + C(I) * D(I)
=1, N

B(I)*x4 + 2
E(I)*8 - F(I)
=1, N

F(I) + G(I) * E(I-1)



LDG for example program

— = Contractable dependence
—X% ™ Noncontractable dependence



Fusion Partition

Fusion partition = partition of LDG nodes into disjoint fusion
clusters

Fusion cluster = set of loop nests to be fused together

A fusion partition is legal if and only if:

1. The source and destination nodes of each noncontractable
edge are placed in distinct clusters, and

2. The reduced graph is acyclic



Examples of Fusion Partitions

— = Contractable dependence
—X% ™ Noncontractable dependence



Cost of a Fusion Partition

Define w;; = weight of pair of nodes, 7 and j

cost savings obtained by fusing nodes ¢ and j

= cost of fusion partion P is given by

F(P)= >  w;
P(1)#P(5)
where P(i) = cluster number for node 7 in fusion partition P.

Cost of fusion partition = sum of inter-cluster w;; weights
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Computing Weights

Examples of computing weights in different applications of
weighted |loop fusion:

e Common Loads: set w;; = number of common values in
load instructions in loop nests ¢z and j

e Cache Locality: set w;; = number of common cache lines
accessed by loop nests 72 and 3

e Remote data accesses: set w;; = number (and size) of
common remote data access in loop nests : and j
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Example of Cost of a Fusion Partition

Summary arcs for LDG from Figure 2.

L ARUT

1 2 3 4 5 6
0|1]10]0]0]0
1({011]12]|1]0
011|010 |0
0121110120
011|012 |0 ]2
gl1o]0 2|0

Table of weights, w; = W
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Problem Statement for Optimal Weighted Loop Fusion

Given an LDG and weights for pairs of nodes, find a legal
fusion partition P with minimum cost, F(P).

The optimized fusion configuration is obtained by fusing all

loops belonging to the same cluster, and generating the fused
loops in a topological sort order of the reduced LDG.
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A Simple Integer Programming Formulation

e Introduce (0,1)-variables z;; such that z;; = 0 means that
LDG nodes ¢ and 5 are placed in the same cluster

e Contractability constraint: z;; = 1 if there is a
noncontractable LDG edge from node i to node j

e Transitivity constraint: z;;, < x;; + =

e Introduce integer variables m; such that =; represents a
topologically sorted cluster numbering of LDG nodes

e Equivalence constraint: If z;; = 0 then m; = m;. This
constraint can be rewritten as —n - x;; < m; — m; < n - Ty

e Acyclicity constraint: If there is an LDG edge from : to j,
then Ljj < T — T
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A Simple Integer Programming Formulation (contd.)

I\/Ilnlmlze Z Wi L
(¢,5)eBUC
subject to Tip < Xij T Zj VYV nodes i, 73,k

Ljj < T — T V arcs (Z,j)

—n-ajijéﬂ'j—ﬂ'i V nodes 1,

Wj—ﬁién-xij vV nodes 1,
ri;i =1 YV noncontractable arcs (4, 75)
r;; €10,1} vV nodes i,

where C C A is the set of contractable arcs and B is the set of
unordered node pairs with nonzero weights

This formulation has O(|N|2) variables and O(|N|3|)
constraints
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More Efficient Formulation

Observations:

e The x; < x;; + x;; triangular inequalities can be dropped
without changing the set of feasible solutions.

e We only need to maintain z;; variables for (i,5) € BUC

e We only need the z;; < m; — m; inequalities for contractable
arcs i.e., for (3,7) € C

e We only need the —n - xz;; < m; — m; inequalities for unordered
node pairs with nonzero weights i.e., for {i,j} € B
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More Efficient Formulation (contd.)

I\/Iinixrprize Z Wi T
(i,7)eBUC
subject to  z;; <m; —m; < n-x;; V contractable arcs (4, 5)
—n iy <mj—m < newgg V unordered node pairs (¢,7)
with nonzero weight
i —m > 1 vV noncontractable arcs (3,5)
r;j € 10,1} ((¢,7) e BUC) .

This formulation has (|N|+ |B| + |C|) variables and
(2|C| + 2|B| + |NC|) constraints.
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Example of More Efficient Formulation

Minimize 23 + (212 + 2224 + =25 + 234 + 2245 + 2256)

subject to
12 <mp — 71 <6212 3 —m > 1
To4 STy — 72 < 6 - T24 T4 — 71 21
L5 S5 — M2 < 6 - 225 e — T4 2> 1

34 <4 — 73 <6234
r45 <5 — 74 < 6 - 245
r56 <me — 75 < 6 - T56
—6 203 <3 — 72 < 6723

Efficient formulation has 12 variables and 17 constraints

(Simple formulation has 18 variables and 99 constraints)
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Optimal Weighted Loop Fusion solution for Example

P =1|2,3,45]|6 (cost = 3)

Summary arcs for LDG from Figure 2.

AT

1 2 3 4 5 6
0|1]10]0]0]0
11011121 |0
01|01 |0 1|0
01211101210
011102 |0 |2
glojojo|z |0

Table of weights, w; = W
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Optimal Weighted Loop Fusion solution for Example

(contd.)
PARDO 10 I =1, N
10 A(I) = E(I-1)
PARDO 20 I = 1, N
B(I) = A(I)*2 + 3
C(I) = B(I) + 99
D(I) = A(N-I+1) + A(I)
E(I) = B(I) + C(I) * D(I)
F(I) = B(I)*4 + 2
50 G(I) = E(I)*8 - F(I)
PARDO 60 I =1, N
60 H(I) = F(I) + G(I) * E(I-1)
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Preliminary Experimental Results

Source Total | Time for total
of LDG n | |B|||A]| | |C| | # iters | # iters (OSL)
Example 6 1 9 6 15 0.080 seconds
034.mdljdp2 | 12 O |12 ] 9 19 0.050 seconds
Svynthetic 100 O | 90 | 80 60 0.140 seconds

Execution times for solving optimal weighted loop fusion
problems using the IBM Optimization Subroutine Library on a
33MHz RS/6000 model 220 workstation.
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Extensions

e Cost term proportional to no. of clusters — extend
objective function to

F(P)= )  wj + S x (no. of clusters)
P()ZP(j5)
where S is the synchronization cost incurred per cluster

e Conformability classes — equivalence classes such that
only nodes from within the same class are allowed to be
fused.

Conformability classes can be used to model non-loop
statements, loops with nonconformable bounds, loops with
premature exits, etc.

21



Extensions (contd.)

e Hierarchical fusion — apply algorithm recursively on LDG
for the body of each fused loop.

e Control dependences — extend LDG to be an acyclic
PDG. Each control dependence edge is noncontractable.

e Branch-and-bound method — compute bounds using
linear programming relaxation described in paper.

Branch-and-bound method automatically stores the best
feasible solution seen till current point in time, and can be
more efficient than using an optimization library.
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Related Work

e [Allen & Cocke ’'72] Introduced loop fusion
transformation.

e [Goldberg & Paige '84] Showed how loop fusion can be
used to optimize stream processing in database queries.

e [Callahan '87] Greedy merge algorithm for unweighted
loop fusion (minimizing the number of clusters).

e [Gao et al '92] Heuristic solution to weighted loop fusion
using repeated applications of max-flow min-cut algorithm

e [Kennedy & McKinley '93] NP-hardness proof for
weighted loop fusion. Experimental results show 4—-17%
improvement in uniprocessor execution times with heuristic
algorithm.
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Conclusions

e Presented an integer programming formulation for weighted
loop fusion

e Size of formulation is linear in size of LDG and weights

e Preliminary execution time measurements show that
optimal weighted loop fusion is tractable to solve in practice
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Future Work

e Extend prototype implementation by making calls to
optimization subroutine library from within the compiler

e Compare performance of heuristic and optimal solutions on
Fortran 90 programs for SMPs

e Extend weighted loop fusion model by adding capacity
constraints

e Extend branch-and-bound algorithm with incremental
recomputation of edge weights

e Investigate development of tractable optimal algorithms for
other NP-hard problems in compiler optimization
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