
COMP 515: Advanced Compilation
for Vector and Parallel Processors

Prof. Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 11 6 October 2015

COMP 515, Fall 2015 (V.Sarkar)2

Homework #3 (REMINDER)
1. Solve exercise 5.6 in book

— Your solution should be legal for all values of K (note that the value of K
is invariant in loop I)

Exercise 5.6: What vector code should be generated for the
following loop?
DO I = 1, 100
 A(I) = B(K) + C(I)
 B(I+1) = A(I) + D(I)
END DO

•  Due on Oct 8th

COMP 515, Fall 2015 (V.Sarkar)3

Coarse-Grain Parallelism (contd)

Chapter 6 of Allen and Kennedy

•  Acknowledgment: Slides from previous offerings of COMP 515
by Prof. Ken Kennedy
— http://www.cs.rice.edu/~ken/comp515/

COMP 515, Fall 2015 (V.Sarkar)4

 DO I = 1,N

S1 T = A(I)

S2 A(I) = B(I)

S3 B(I) = T

 ENDDO

 PARALLEL DO I = 1,N

 PRIVATE t

S1 t = A(I)

S2 A(I) = B(I)

S3 B(I) = t

 ENDDO

Scalar Privatization (Recap)
•  The analog of scalar expansion is privatization.
•  Temporaries can be given separate namespaces for each

iteration.

COMP 515, Fall 2015 (V.Sarkar)5

 PARALLEL DO I = 1,100
 PRIVATE t(N)

S0 t(1) = X

L1 DO J = 2,N

S1 t(J) = t(J-1)+B(I,J)

S2 A(I,J)=t(J)

 ENDDO

 ENDDO

Array Privatization
•  Array variables can be privatized as well (but the underlying
analysis can be more complicated than for scalars)

 DO I = 1,100

S0 T(1)=X

L1 DO J = 2,N

S1 T(J) = T(J-1)+B(I,J)

S2 A(I,J) = T(J)

 ENDDO

 ENDDO

COMP 515, Fall 2015 (V.Sarkar)6

Loop Distribution
•  As we saw in Chapter 5, loop distribution can convert loop-

carried dependences to loop-independent dependences.
•  Consequently, it often creates opportunity for outer-loop

parallelism.
•  However, we must add extra barriers to keep distributed loops

from executing out of order, so the overhead may override the
parallel savings.

COMP 515, Fall 2015 (V.Sarkar)7

Loop Alignment
•  Many carried dependencies are due to array alignment issues.
•  If we can align all references, then dependencies would go

away, and loop-level parallelism can be exposed.
•  This is also related to Software Pipelining
DO I = 2,N

 A(I) = B(I)+C(I)

 D(I) = A(I-1)*2.0

ENDDO

DO I = 1,N ! Aligned loop

 IF (I .GT. 1) A(I) = B(I)+C(I)

 IF (I .LT. N) D(I+1) = A(I)*2.0

ENDDO

D(2) = A(1)*2.0

DO I = 2,N-1 ! Pipelined loop

 A(I) = B(I)+C(I)

 D(I+1) = A(I)*2.0

ENDDO

A(N) = B(N)+C(N)

COMP 515, Fall 2015 (V.Sarkar)8

Code Replication
•  If two dependences between the same statements have

different dependence distances, then alignment doesn’t help.
•  We can fix the second case by replicating code:

DO I = 1,N

 A(I+1) = B(I)+C

 X(I) = A(I+1)+A(I)

ENDDO

DO I = 1,N
 A(I+1) = B(I)+C
 ! Replicated Statement
 IF (I .EQ 1) THEN
 t = A(I)
 ELSE
 t = B(I-1)+C
 END IF
 X(I) = A(I+1)+t
ENDDO

COMP 515, Fall 2015 (V.Sarkar)9

Strip Mining
•  Converts available parallelism into a form more suitable for the

hardware
•  Assume THRESHOLD = minimum iters for parallel loop (due to

overhead reasons)

 DO I = 1, N
 A(I) = A(I) + B(I)
 ENDDO

 ==>
 k = MAX(THRESHOLD, CEIL (N / P))
 PARALLEL DO I = 1, N, k

 DO i = I, MIN(I + k-1, N)
 A(i) = A(i) + B(i)
 ENDDO
 END PARALLEL DO

COMP 515, Fall 2015 (V.Sarkar)10

Loop Fusion
•  Loop distribution was a method for separating parallel parts of

a loop.
•  Our solution in Section 5 attempted to find the maximal loop

distribution.
•  The maximal distribution often finds parallelizable components

too small for efficient coarse-grain parallelism.
•  Two obvious solutions:

—  Strip mine large loops to create larger granularity (with an outer
parallel loop and inner sequential loop)

—  Perform maximal distribution, and then fuse together parallelizable
loops.

— Both solutions can be combined as well.

COMP 515, Fall 2015 (V.Sarkar)11

Fusion Safety: Fusion-Preventing  
Loop-Independent Dependences

Definition: A loop-independent dependence between statements S1 and
S2 in loops L1 and L2 respectively is fusion-preventing if fusing L1 and
L2 causes the dependence to be carried by the combined loop in the
opposite direction.

Example of an illegal loop fusion:

 DO I = 1,N

S1 A(I) = B(I)+C

 ENDDO

 DO I = 1,N

S2 D(I) = A(I+1)+E

 ENDDO

 DO I = 1,N

S1 A(I) = B(I)+C

S2 D(I) = A(I+1)+E

 ENDDO

COMP 515, Fall 2015 (V.Sarkar)12

Fusion Safety: Ordering Constraint
•  We shouldn’t fuse loops if the fusion will result in an illegal

ordering of the dependence graph.
•  Ordering Constraint: Two loops can�t be legally fused if there

exists a path of loop-independent dependencies between them
containing a loop or statement not being fused with them i.e.,
if fusion will result in a cycle in the resulting loop-independent
dependences

L1

L2 L3

Fusing L1 with L3 violates the
ordering constraint. {L1,L3}
must occur both before and
after the node L2, which is not
possible.

COMP 515, Fall 2015 (V.Sarkar)13

Fusion Profitability

Parallel loops should generally
not be merged with sequential
loops.

Definition: An edge between two
statements in loops L1 and L2
respectively is said to be
parallelism-inhibiting if after
merging L1 and L2, the
dependence is carried by the
combined loop.

 DO I = 1,N

S1 A(I+1) = B(I) + C

 ENDDO

 DO I = 1,N

S2 D(I) = A(I) + E

 ENDDO

 DO I = 1,N

S1 A(I+1) = B(I) + C

S2 D(I) = A(I) + E

 ENDDO

COMP 515, Fall 2015 (V.Sarkar)14

Typed Fusion
•  We start by classifying loops into two types: parallel and

sequential.
•  We next gather together all edges that inhibit efficient fusion,

(i.e., that connect a sequential and a parallel loops) and call
them “bad edges”.

•  Given a graph of loop-independent dependences (V,E), we want
to obtain a graph (V�,E�) by merging vertices of V subject to
the following constraints:

—  Bad Edge Constraint: vertices joined by a bad edge aren�t fused.
—  Ordering Constraint: vertices joined by path containing non-

parallel vertex aren�t fused

COMP 515, Fall 2015 (V.Sarkar)15

Typed Fusion Example

3

1 2

4

5 6

7 8

1,3 2

4

5,8 6

7

1 2

4 5

6

3

1.3

2,4,6

5,8

7

Original loop graph

After fusing parallel loops After fusing sequential loops

Proceedings of the 1997 ACM Symposium on Parallel Algorithms and Architectures (SPAA), Pages 282-291

