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Homework #3 (REMINDER)
1. Solve exercise 5.6 in book 

— Your solution should be legal for all values of K (note that the value of K 
is invariant in loop I) 

 

Exercise 5.6: What vector code should be generated for the 
following loop? 
DO I = 1, 100 
    A(I) = B(K) + C(I) 
    B(I+1) = A(I) + D(I) 
END DO 

 
•  Due on Oct 8th 
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Coarse-Grain Parallelism (contd)

Chapter 6 of Allen and Kennedy 

•  Acknowledgment: Slides from previous offerings of COMP 515 
by Prof. Ken Kennedy 
— http://www.cs.rice.edu/~ken/comp515/ 
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    DO I = 1,N

S1     T = A(I)

S2     A(I) = B(I)

S3     B(I) = T

    ENDDO

    PARALLEL DO I = 1,N

      PRIVATE t

S1    t = A(I)

S2    A(I) = B(I)

S3    B(I) = t

    ENDDO     

Scalar Privatization (Recap)
•  The analog of scalar expansion is privatization. 
•  Temporaries can be given separate namespaces for each 

iteration. 
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    PARALLEL DO I = 1,100
      PRIVATE t(N)

S0    t(1) = X

L1    DO J = 2,N

S1       t(J) = t(J-1)+B(I,J)

S2       A(I,J)=t(J)

      ENDDO

   ENDDO

Array Privatization
•  Array variables can be privatized as well (but the underlying 
analysis can be more complicated than for scalars) 

    DO I = 1,100

S0     T(1)=X

L1     DO J = 2,N

S1       T(J) = T(J-1)+B(I,J) 

S2       A(I,J) = T(J)

       ENDDO

    ENDDO



COMP 515, Fall 2015 (V.Sarkar)6 

Loop Distribution
•  As we saw in Chapter 5, loop distribution can convert loop-

carried dependences to loop-independent dependences. 
•  Consequently, it often creates opportunity for outer-loop 

parallelism. 
•  However, we must add extra barriers to keep distributed loops 

from executing out of order, so the overhead may override the 
parallel savings. 
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Loop Alignment
•  Many carried dependencies are due to array alignment issues. 
•  If we can align all references, then dependencies would go 

away, and loop-level parallelism can be exposed. 
•  This is also related to Software Pipelining 
DO I = 2,N

   A(I) = B(I)+C(I)

   D(I) = A(I-1)*2.0

ENDDO

DO I = 1,N   ! Aligned loop

   IF (I .GT. 1) A(I) = B(I)+C(I)

   IF (I .LT. N) D(I+1) = A(I)*2.0

ENDDO

D(2) = A(1)*2.0

DO I = 2,N-1   ! Pipelined loop

   A(I) = B(I)+C(I)

   D(I+1) = A(I)*2.0

ENDDO

A(N) = B(N)+C(N)
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Code Replication
•  If two dependences between the same statements have 

different dependence distances, then alignment doesn’t help.  
•  We can fix the second case by replicating code: 

DO I = 1,N

   A(I+1) = B(I)+C

   X(I) = A(I+1)+A(I)

ENDDO

DO I = 1,N
   A(I+1) = B(I)+C
   ! Replicated Statement
   IF (I .EQ 1) THEN
      t = A(I)
   ELSE
      t = B(I-1)+C
   END IF
   X(I) = A(I+1)+t
ENDDO
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Strip Mining
•  Converts available parallelism into a form more suitable for the 

hardware 
•  Assume THRESHOLD = minimum iters for parallel loop (due to 

overhead reasons) 

   DO I = 1, N 
       A(I) = A(I) + B(I) 
   ENDDO 

    ==> 
   k = MAX(THRESHOLD, CEIL (N / P)) 
   PARALLEL DO I = 1, N, k 

     DO i = I, MIN(I + k-1, N) 
             A(i) = A(i) + B(i) 
    ENDDO 
   END PARALLEL DO 
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Loop Fusion
•  Loop distribution was a method for separating parallel parts of 

a loop. 
•  Our solution in Section 5 attempted to find the maximal loop 

distribution. 
•  The maximal distribution often finds parallelizable components 

too small for efficient coarse-grain parallelism. 
•   Two obvious solutions: 

—  Strip mine large loops to create larger granularity (with an outer 
parallel loop and inner sequential loop) 

—  Perform maximal distribution, and then fuse together parallelizable 
loops. 

— Both solutions can be combined as well. 
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Fusion Safety: Fusion-Preventing  
Loop-Independent Dependences

Definition: A loop-independent dependence between statements S1 and 
S2 in loops L1 and L2 respectively is fusion-preventing if fusing L1 and 
L2 causes the dependence to be carried by the combined loop in the 
opposite direction. 

 

Example of an illegal loop fusion: 

    DO I = 1,N

S1 A(I) = B(I)+C

    ENDDO

    DO I = 1,N

S2 D(I) = A(I+1)+E

    ENDDO

    DO I = 1,N

S1 A(I) = B(I)+C

S2 D(I) = A(I+1)+E

    ENDDO
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Fusion Safety: Ordering Constraint
•  We shouldn’t fuse loops if the fusion will result in an illegal 

ordering of the dependence graph. 
•  Ordering Constraint:  Two loops can�t be legally fused if there 

exists a path of loop-independent dependencies between them 
containing a loop or statement not being fused with them i.e., 
if fusion will result in a cycle in the resulting loop-independent 
dependences 

L1

L2 L3

Fusing L1 with L3 violates the 
ordering constraint.  {L1,L3} 
must occur both before and 
after the node L2, which is not 
possible. 
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Fusion Profitability

Parallel loops should generally 
not be merged with sequential 
loops. 

Definition: An edge between two 
statements in loops L1 and L2 
respectively is said to be 
parallelism-inhibiting if after 
merging L1 and L2, the 
dependence is carried by the 
combined loop. 

    DO I = 1,N

S1  A(I+1) = B(I) + C

    ENDDO

    DO I = 1,N

S2 D(I) = A(I) + E

    ENDDO

    DO I = 1,N

S1 A(I+1) = B(I) + C

S2 D(I) = A(I) + E

    ENDDO
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Typed Fusion
•  We start by classifying loops into two types: parallel and 

sequential. 
•  We next gather together all edges that inhibit efficient fusion, 

(i.e., that connect a sequential and a parallel loops) and call 
them “bad edges”. 

•  Given a graph of loop-independent dependences (V,E), we want 
to obtain a graph (V�,E�) by merging vertices of V subject to 
the following constraints: 

—  Bad Edge Constraint: vertices joined by a bad edge aren�t fused. 
—  Ordering Constraint: vertices joined by path containing non-

parallel vertex aren�t fused 
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Typed Fusion Example
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Proceedings of the  1997 ACM Symposium on Parallel Algorithms and Architectures (SPAA), Pages 282-291 
















































