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Homework #3 Problem Statement
1. Solve exercise 5.6 in book 

— Your solution should be legal for all values of K (note that the value of K 
is invariant in loop I) 

 

Exercise 5.6: What vector code should be generated for the 
following loop? 
DO I = 1, 100 
    A(I) = B(K) + C(I) 
    B(I+1) = A(I) + D(I) 
END DO 
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Homework 3 Solution 
•  In general, the following loop 
DO I = 1, 100 
    A(I) = B(K) + C(I) 
    B(I+1) = A(I) + D(I) 
END DO 

can be split into two loops as follows (index set splitting): 
S0: B(…) = … 
DO I = 1, min(K-1,100)     ! All reads of B(K) return value from S0 (before entry to loop) 
S1:    A(I) = B(K) + C(I)    ! Only dep on B is loop independent anti dep, when I=K-1 
S2: B(I+1) = A(I) + D(I)   ! Only dependence on A is loop independent flow 
END DO 
DO I = max(K,1), 100             ! All reads of B(K) return value from S2 when I=K-1 
S3:    A(I) = B(K) + C(I)    ! No dependence on B 
S4:    B(I+1) = A(I) + D(I) ! Only dependence on A is loop independent flow 
END DO 
•  This transformation is correct for all values of K  
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Homework 3 Solution (contd)
•  The vectorization then becomes straightforward for the two loops: 
! All reads of B(K) return value from S0 (before entry to loop) 
S1:    A(1:min(K-1,100)) = B(K) + C(1:min(K-1,100)) 
S2:    B(2:min(K,101)) = A(1:min(K-1,100)) + D(1:min(K-1,100)) 
! All reads of B(K) return value from S2 when I=K-1 
S3:    A(max(K,1):100) = B(K) + C(max(K,1):100) 
S4:    B(max(K+1,2):101) = A(max(K,1):100) + D(max(K,1):100) 
•  Finally, check the solutions for different cases 
•  Case 1: K <= 1 

—  Statements S1 and S2 become no-ops 
—  Statements S3 and S4 run with vector lengths = 100 exactly 

•  Case 2: K >= 101 
—  Statements S1 and S2 run with vector lengths = 100 exactly 
—  Statements S3 and S4 become no-ops 

•  Case 3: 2 <= K <= 100 
—  Statements S1 and S2 run with vector lengths = K-1 exactly 
—  Statements S3 and S4 run with vector lengths = 100-K+1 exactly 
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Midterm Review of Chapters 1-5  
 

(Chapter 6 is in scope for Exam 1, but 
excluded from this review since it was 

covered recently in class) 
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Compiler Challenges for High 
Performance Architectures

Allen and Kennedy, Chapter 1 
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Bernstein’s Conditions [1966]
•  When is it safe to run two tasks R1 and R2 in parallel? 

—  If none of the following holds: 
1.  R1 writes into a memory location that R2 reads 
2.  R2 writes into a memory location that R1 reads 
3.  Both R1 and R2 write to the same memory location 

•  How can we convert this to loop parallelism? 
•  Think of loop iterations as tasks 

•  Does this apply to sequential loops embedded in an explicitly 
parallel program? 
•  Impact of memory model on ordering of read operations 
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Dependence: Theory and Practice 

Allen and Kennedy, Chapter 2 
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Dependences
•  Formally: 

There is a data dependence from statement S1 to statement S2 (S2 
depends on S1) if:   

1. Both statements access the same memory location and at least     one of 
them stores onto it, and 

2. There is a feasible run-time execution path from S1 to S2 
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Load Store Classification
•  Quick review of dependences classified in terms of load-store 

order: 
1. True dependences (RAW hazard)  

–  S2 depends on S1 is denoted by S1 δ S2 
 
2. Antidependence (WAR hazard) 

–  S2 depends on S1 is denoted by S1 δ-1 S2 
 
3. Output dependence (WAW hazard) 

–  S2 depends on S1 is denoted by S1 δ0 S2 
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Formal Definition of Loop Dependence
•  Theorem 2.1 Loop Dependence: 

There exists a dependence from statements S1 to statement S2 in a 
common nest of loops if and only if there exist two iteration 
vectors i and j for the nest, such that  
(1) i < j or i = j and there is a path from S1 to S2 in the body of the 
loop,  
(2) statement S1 accesses memory location M on iteration i and 
statement S2 accesses location M on iteration j, and  
(3) one of these accesses is a write. 

•  Follows from the definition of dependence 
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Reordering Transformations
•  A reordering transformation is any program transformation that 

merely changes the order of execution of the code, without adding 
or deleting any executions of any statement 

•  A reordering transformation does not eliminate dependences 
•  A reordering transformation preserves a dependence if it preserves 

the relative execution order of the source and sink of that 
dependence. 

•  Fundamental Theorem of Dependence: 
— Any reordering transformation that preserves every dependence in a 

program preserves the meaning of that program 
— Proof by contradiction. Theorem 2.2 in the book. 

•  A transformation is said to be valid or legal for the program to 
which it applies if it preserves all dependences in the program. 
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Distance & Direction Vectors
•  Consider a dependence in a loop nest of n loops 

— Statement S1 on iteration i is the source of the dependence 
— Statement S2 on iteration j is the sink of the dependence 

•  The distance vector is a vector of length n, d(i,j) such that: d(i,j)k = 
jk - ik 
—  We normalize distance vectors for loops in which the index step size is 

not equal to 1 (but usually prefer to normalize the loops to step of +1 
instead) 

•  The direction vector is a vector of length n, r(i,j) such that: r(i,j)k = 
jk opk ik, where opk is a relational operator (<, >, =, <=, >=, !=, *) 
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Implausible Distance & Direction Vectors

•  A distance vector is implausible if its leftmost nonzero 
element is negative i.e., if the vector is lexicographically less 
than the zero vector 

•  Likewise, a direction vector is implausible if its leftmost non 
"=" component is not "<"  

•  No dependence in a sequential program can have an 
implausible distance or direction vector as this would imply 
that the sink of the dependence occurs before the source. 
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Direction Vector Transformation
•  Theorem 2.3. Direction Vector Transformation. Let T be a 

transformation that is applied to a loop nest and that does not 
rearrange the statements in the body of the loop. Then the 
transformation is valid if, after it is applied, none of the direction 
vectors for dependences with source and sink in the nest has a 
leftmost non- “=” component that is “>” i.e., none of the 
transformed direction vectors become implausible. 

•  Follows from Fundamental Theorem of Dependence: 
— All dependences exist 
— None of the dependences have been reversed 
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Loop-carried and Loop-independent 
Dependences

•  If in a loop statement S2 depends on S1, then there are two possible 
ways of this dependence occurring: 

1. S1 and  S2 execute on different iterations 
— This is called a loop-carried dependence. 
 

2. S1 and S2 execute on the same iteration 
— This is called a loop-independent dependence. 
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Simple Vectorization Algorithm
procedure vectorize (L, D) 
// L is the maximal loop nest containing the statement.  
// D is the dependence graph for statements in L.  
find the set {S1, S2, ... , Sm} of maximal strongly-connected regions in the dependence 

graph D restricted to L  (Tarjan); 
construct Lp from L by reducing each Si to a single node and compute Dp, the 

dependence graph naturally induced on Lp by D; 
let {p1, p2, ... , pm} be the m nodes of Lp numbered in an order consistent with Dp (use 

topological sort); 
  
 for i = 1 to m do begin 
   if pi is a dependence cycle then 

generate a DO-loop nest around the statements in pi; 
   else 

directly rewrite pi in Fortran 90, vectorizing it with respect to every loop 
containing it; 

   end 
end vectorize 
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Problems With Simple Vectorization
 DO I = 1, N 

   DO J = 1, M 

S1    A(I+1,J) = A(I,J) + B 

   ENDDO 

 ENDDO 

•  Dependence from S1 to itself with d(i, j) = (1,0) 
•  Key observation: Since dependence is at level 1, we can 

manipulate the other loop! 
•  Can be converted to:  

 DO I = 1, N 

S1    A(I+1,1:M) = A(I,1:M) + B 

 ENDDO 

•  The simple algorithm does not capitalize on such 
opportunities 
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Advanced Vectorization Algorithm

procedure codegen(R, k, D); 
// R is the region for which we must generate code. 
// k is the minimum nesting level of possible parallel loops.   
// D is the dependence graph among statements in R..  
find the set {S1, S2, ... , Sm} of maximal strongly-connected regions in the dependence graph D 

restricted to R;  
construct Rp from R by reducing each Si to a single node and 
compute Dp, the dependence graph naturally induced on Rp by D; 
let {p1, p2, ... , pm} be the m nodes of Rp numbered in an order 

consistent with Dp (use topological sort to do the numbering); 
for i = 1 to m do begin 

 if pi is cyclic then begin 
generate a level-k DO statement; 
let Di be the dependence graph consisting of all dependence edges in D that are at level 

k+1 or greater and are internal to pi; 
codegen (pi, k+1, Di); 
generate the level-k ENDDO statement; 

 end 
 else 

generate a vector statement for pi in r(pi)-k+1 dimensions, where r (pi) is the number of 
loops containing pi; 

end 
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Dependence Testing

Allen and Kennedy, Chapter 3  
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The General Problem
DO i1 = L1, U1
DO i2 = L2, U2

...
DO in = Ln, Un

 S1 A(f1(i1,...,in),...,fm(i1,...,in)) = ...
 S2 ... = A(g1(i1,...,in),...,gm(i1,...,in))

ENDDO
...

ENDDO
ENDDO

Under what conditions is the following true for iterations α and β ?
fi (α) = gi (β) for all i, 1 ≤ i ≤ m 

Note that the number of equations equals the rank of the array,  
and the number of variables is twice the number of loops that enclose both 

array references (two iteration vectors)
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Basics: Complexity
A subscript equation is said to be 

— ZIV if it contains no index (zero index variable) 
— SIV if it contains only one index (single index variable) 
— MIV if it contains more than one index (multiple index variables) 

For Example:  
   A(5,I+1,j) = A(1,I,k) + C

First subscript equation is ZIV

Second subscript equation is SIV

Third subscript equation is MIV
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Dependence Testing: Overview
•  Partition subscripts of a pair of array references into 

separable and coupled groups 
•  Classify each subscript as ZIV, SIV or MIV 
•  For each separable subscript apply single subscript test. If not 

done goto next step 
•  For each coupled group apply multiple subscript test 
•  If still not done, merge all direction vectors computed in the 

previous steps into a single set of direction vectors 
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Linear Diophantine Equations
•  A basic result tells us that there are values for x1,x2,

…,xn,y1,y2,…,yn so that 

     What’s more, gcd(a1,…,an,b1,…,bn) is the smallest number this 
is true for. 

•  As a result, the equation has a solution iff gcd(a1,…,an,b1,…,bn) 
divides b0 - a0 

—  But the solution may not be in the region (loop iteration values) of 
interest 

•  Exercise: try this result on the A(4*i+2) & A(4*i+4) example 

a1x1 − b1y1 + ... + anxn − bnyn = gcd(a1, ..., an, b1, ..., bn)
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Real Solutions
•  Unfortunately, the gcd test is less useful then it might seem.  
•  Useful technique is to show that the equation has no solutions 

in region of interest ==> explore real solutions for this purpose 
•  Solving h(x) = 0 is essentially an integer programming problem.  

Linear programming techniques are used as an approximation. 
•  Since the function is continuous, the Intermediate Value 

Theorem says that a solution exists iff: 
             

€ 

minR h ≤ 0 ≤maxR h
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Banerjee Inequality
•  We need an easy way to calculate minR h and maxR h.  

•  Definitions: 

•  a+ and a- are both >= 0 and are called the positive part and 
negative part of a, so that a = a+ - a-   

€ 

hi
+ =maxRi h(xi,yi)

€ 

hi
− =minRi h(xi,yi)

a+ =
a a ≥ 0
0 a < 0
" 
# 
$ 

a− =
a a < 0
0 a ≥ 0
# 
$ 
% 
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Banerjee Inequality
•  Theorem 3.3 (Banerjee).  Let D be a direction vector, and h be 

a dependence function.   h = 0 can be solved in the region R 
iff: 

 
 

 Proof:  Immediate from Lemma 3.3 and the IMV. 

Hi
−(Di) ≤ b0 − a0 ≤

i=1

n

∑ Hi
+(Di)

i=1

n

∑
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Preliminary Transformations

Chapter 4 of Allen and Kennedy 
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Loop Normalization
•  Transform loop so that  

— The new stride becomes +1 (more important) 
— The new lower bound becomes +1 (less important) 

•  To make dependence testing as simple as possible 
•  Serves as information gathering phase 
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Enhancing Fine-Grained Parallelism

Chapter 5 of Allen and Kennedy 
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Chapter 2’s Codegen
•  Codegen: tries to find parallelism using transformations of loop 

distribution and statement reordering 
•  If we deal with loops containing cyclic dependences early on in 

the loop nest, we can potentially vectorize more loops 

•  Goal in Chapter 5: To explore other transformations to exploit 
parallelism  
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Loop Interchange: Safety
•  Theorem 5.1 Let D(i,j) be a direction vector for a dependence in 

a perfect nest of loops. Then the direction vector for the same 
dependence after a permutation of the loops in the nest is 
determined by applying the same permutation to the elements 
of D(i,j). 

DO I = 1, L 

  DO K = 1, N 

    DO J = 1, M 

      A(I+1,J+1,K) = B(I,J,K) 

    ENDDO 

  ENDDO 

ENDDO 

Dependence: (<, =, <) 

DO I = 1, L 

  DO J = 1, M 

    DO K = 1, N 

      A(I+1,J+1,K) = B(I,J,K) 

    ENDDO 

  ENDDO 

ENDDO 

Dependence: (<, <, =) 
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Loop Interchange: Safety
•  Theorem 5.2 A permutation of the loops in a perfect nest is 

legal if and only if the direction matrix, after the same 
permutation is applied to its columns, has no ">" direction as 
the leftmost non-"=" direction in any row. 

•  Follows from Theorem 5.1 and Theorem 2.3 
  
 Example: 
   i  j  k    j  k  i 
   <  <  =   <  =  < 

   <  =  >   =  >  < 
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Scalar Expansion and its use in Removing Anti and 
Output Dependences

     DO I = 1, N 
S1     T = A(I) 
S2     A(I) = B(I) 
S3     B(I) = T 
    ENDDO 

•  Scalar Expansion: 
    DO I = 1, N 
S1     T$(I) = A(I) 
S2     A(I) = B(I) 
S3     B(I) = T$(I) 
    ENDDO 
    T = T$(N) 

•  leads to: 
S1      T$(1:N) = A(1:N) 

S2      A(1:N) = B(1:N) 

S3      B(1:N) = T$(1:N) 

        T = T$(N) 
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Scalar Renaming
•  Renaming algorithm partitions all definitions and uses into equivalent 

classes, each of which can occupy different memory locations. 
•  Use the definition-use graph to: 

— Pick definition 
— Add all uses that the definition reaches to the equivalence class 
— Add all definitions that reach any of the uses… 
— ..until fixed point is reached 

•  Example: 
     IF (…) THEN   

 S1    T = … 

     ELSE 

 S2    T = … 

     ENDIF 

 S3  … = T 

 S4    T = … 

 S5  … = T 

 IF (…) THEN 
      T1 = … 
 ELSE 
      T1 = … 
 ENDIF 
 … = T1 
 T2 = … 
 … = T2 
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Array Renaming
DO I = 1, N 

S1      A(I) = A(I-1) + X 

S2      Y(I) = A(I) + Z 

S3      A(I) = B(I) + C 

  ENDDO 

•  S1 δ∞ S2           S2 δ∞-1 S3            S3 δ1 S1           S1 δ∞0 S3 

•  Rename A(I) to A’(I):  
   DO I = 1, N 

S1      A’(I) = A(I-1) + X 

S2      Y(I) = A’(I) + Z 

S3      A(I) = B(I) + C 

   ENDDO  

•  Dependences remaining:   S1 δ∞ S2    and      S3 δ1 S1 
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Node Splitting
•  Sometimes Renaming fails 

DO I = 1, N 

S1: A(I) = X(I+1) + X(I)

S2: X(I+1) = B(I) + 32

ENDDO

•  Recurrence kept intact by renaming algorithm 
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Node Splitting
DO I = 1, N 
S1:  A(I) = X(I+1) + X(I)

S2:  X(I+1) = B(I) + 32

ENDDO

•  Break critical antidependence 
•  Make copy of read from which 

antidependence emanates 

DO I = 1, N 

S1’: X$(I) = X(I+1)

S1: A(I) = X$(I) + X(I)

S2: X(I+1) = B(I) + 32

ENDDO

•  Recurrence broken 
•  Vectorized to 
S1’:  X$(1:N) = X(2:N+1)
S2:   X(2:N+1) = B(1:N) + 32
S1:   A(1:N) = X$(1:N) + X(1:N)
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Index-set Splitting
•  Subdivide loop into different iteration ranges to achieve partial 

parallelization 
— Threshold Analysis [Strong SIV, Weak Crossing SIV] 

— Loop Peeling [Weak Zero SIV] 

— Section Based Splitting [Variation of loop peeling] 
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Threshold Analysis
DO I = 1, 20 

A(I+20) = A(I) + B

ENDDO

Vectorize to..

A(21:40) = A(1:20) + B

 
 
 
DO I = 1, 100 

A(I+20) = A(I) + B

ENDDO

Strip mine to..

DO I = 1, 100, 20

DO i = I, I+19 

A(i+20) = A(i) + B

ENDDO

ENDDO

Vectorize this
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Loop Peeling
•  Source of dependence is a single iteration 

DO I = 1, N 

A(I) = A(I) + A(1)

ENDDO

Loop peeled to..

A(1) = A(1) + A(1)

DO I = 2, N 

A(I) = A(I) + A(1)

ENDDO

Vectorize to..

A(1) = A(1) + A(1)

A(2:N)= A(2:N) + A(1)



COMP 515, Fall 2015 (V.Sarkar)42 

Run-time Symbolic Resolution
•  “Breaking Conditions” 

DO I = 1, N 

A(I+L) = A(I) + B(I)

ENDDO

Transformed to..

IF(L.LE.0 .OR. L.GT.N) THEN

A(L+1:N+L) = A(1:N) + B(1:N)

ELSE

DO I = 1, N 

   A(I+L) = A(I) + B(I)

ENDDO

ENDIF
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Loop Skewing

•  Reshape Iteration Space to uncover parallelism 
 

DO I = 1, N

DO J = 1, N 

(=,<)

S: A(I,J) = A(I-1,J) + A(I,J-1)

(<,=)

ENDDO

ENDDO

Parallelism not apparent
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Loop Skewing
•  Dependence Pattern before loop skewing 
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Loop Skewing
•  Do the following transformation called loop skewing 

jj=J+I or J=jj-I

DO I = 1, N

DO jj = I+1, I+N 

   J = jj - I             (=,<)

S:  A(I,J) = A(I-1,J) + A(I,J-1)

(<,<)

ENDDO

ENDDO

Note: Direction Vector Changes, but statement body remains the same

(Examples in textbook usually copy propagate J=jj-I in all uses of J)
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Loop Skewing
•  Dependence pattern after loop skewing 
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Midterm exam reminder (Exam 1)
•  Take-home exam (3 hours) 

— Open book: textbook only, no other resources 
— Made available today (Thursday, Oct 15th), and needs to be 

returned to Annepha Pemberton in Duncan Hall room 3080 by Oct 
22nd 

— Scope of exam is Chapters 1-6 of textbook 


