
COMP 515: Advanced Compilation
for Vector and Parallel Processors

Prof. Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 12 15 October 2015

COMP 515, Fall 2015 (V.Sarkar)2

Homework #3 Problem Statement
1. Solve exercise 5.6 in book

— Your solution should be legal for all values of K (note that the value of K
is invariant in loop I)

Exercise 5.6: What vector code should be generated for the
following loop?
DO I = 1, 100
 A(I) = B(K) + C(I)
 B(I+1) = A(I) + D(I)
END DO

COMP 515, Fall 2015 (V.Sarkar)3

Homework 3 Solution
•  In general, the following loop
DO I = 1, 100
 A(I) = B(K) + C(I)
 B(I+1) = A(I) + D(I)
END DO

can be split into two loops as follows (index set splitting):
S0: B(…) = …
DO I = 1, min(K-1,100) ! All reads of B(K) return value from S0 (before entry to loop)
S1: A(I) = B(K) + C(I) ! Only dep on B is loop independent anti dep, when I=K-1
S2: B(I+1) = A(I) + D(I) ! Only dependence on A is loop independent flow
END DO
DO I = max(K,1), 100 ! All reads of B(K) return value from S2 when I=K-1
S3: A(I) = B(K) + C(I) ! No dependence on B
S4: B(I+1) = A(I) + D(I) ! Only dependence on A is loop independent flow
END DO
•  This transformation is correct for all values of K

COMP 515, Fall 2015 (V.Sarkar)4

Homework 3 Solution (contd)
•  The vectorization then becomes straightforward for the two loops:
! All reads of B(K) return value from S0 (before entry to loop)
S1: A(1:min(K-1,100)) = B(K) + C(1:min(K-1,100))
S2: B(2:min(K,101)) = A(1:min(K-1,100)) + D(1:min(K-1,100))
! All reads of B(K) return value from S2 when I=K-1
S3: A(max(K,1):100) = B(K) + C(max(K,1):100)
S4: B(max(K+1,2):101) = A(max(K,1):100) + D(max(K,1):100)
•  Finally, check the solutions for different cases
•  Case 1: K <= 1

—  Statements S1 and S2 become no-ops
—  Statements S3 and S4 run with vector lengths = 100 exactly

•  Case 2: K >= 101
—  Statements S1 and S2 run with vector lengths = 100 exactly
—  Statements S3 and S4 become no-ops

•  Case 3: 2 <= K <= 100
—  Statements S1 and S2 run with vector lengths = K-1 exactly
—  Statements S3 and S4 run with vector lengths = 100-K+1 exactly

COMP 515, Fall 2015 (V.Sarkar)5

Midterm Review of Chapters 1-5  
 

(Chapter 6 is in scope for Exam 1, but
excluded from this review since it was

covered recently in class)

COMP 515, Fall 2015 (V.Sarkar)6

Compiler Challenges for High
Performance Architectures

Allen and Kennedy, Chapter 1

COMP 515, Fall 2015 (V.Sarkar)7

Bernstein’s Conditions [1966]
•  When is it safe to run two tasks R1 and R2 in parallel?

—  If none of the following holds:
1.  R1 writes into a memory location that R2 reads
2.  R2 writes into a memory location that R1 reads
3.  Both R1 and R2 write to the same memory location

•  How can we convert this to loop parallelism?
•  Think of loop iterations as tasks

•  Does this apply to sequential loops embedded in an explicitly
parallel program?
•  Impact of memory model on ordering of read operations

COMP 515, Fall 2015 (V.Sarkar)8

 
Dependence: Theory and Practice

Allen and Kennedy, Chapter 2

COMP 515, Fall 2015 (V.Sarkar)9

Dependences
•  Formally:

There is a data dependence from statement S1 to statement S2 (S2
depends on S1) if:

1. Both statements access the same memory location and at least one of
them stores onto it, and

2. There is a feasible run-time execution path from S1 to S2

COMP 515, Fall 2015 (V.Sarkar)10

Load Store Classification
•  Quick review of dependences classified in terms of load-store

order:
1. True dependences (RAW hazard)

–  S2 depends on S1 is denoted by S1 δ S2

2. Antidependence (WAR hazard)

–  S2 depends on S1 is denoted by S1 δ-1 S2

3. Output dependence (WAW hazard)

–  S2 depends on S1 is denoted by S1 δ0 S2

COMP 515, Fall 2015 (V.Sarkar)11

Formal Definition of Loop Dependence
•  Theorem 2.1 Loop Dependence:

There exists a dependence from statements S1 to statement S2 in a
common nest of loops if and only if there exist two iteration
vectors i and j for the nest, such that
(1) i < j or i = j and there is a path from S1 to S2 in the body of the
loop,
(2) statement S1 accesses memory location M on iteration i and
statement S2 accesses location M on iteration j, and
(3) one of these accesses is a write.

•  Follows from the definition of dependence

COMP 515, Fall 2015 (V.Sarkar)12

Reordering Transformations
•  A reordering transformation is any program transformation that

merely changes the order of execution of the code, without adding
or deleting any executions of any statement

•  A reordering transformation does not eliminate dependences
•  A reordering transformation preserves a dependence if it preserves

the relative execution order of the source and sink of that
dependence.

•  Fundamental Theorem of Dependence:
— Any reordering transformation that preserves every dependence in a

program preserves the meaning of that program
— Proof by contradiction. Theorem 2.2 in the book.

•  A transformation is said to be valid or legal for the program to
which it applies if it preserves all dependences in the program.

COMP 515, Fall 2015 (V.Sarkar)13

Distance & Direction Vectors
•  Consider a dependence in a loop nest of n loops

— Statement S1 on iteration i is the source of the dependence
— Statement S2 on iteration j is the sink of the dependence

•  The distance vector is a vector of length n, d(i,j) such that: d(i,j)k =
jk - ik
—  We normalize distance vectors for loops in which the index step size is

not equal to 1 (but usually prefer to normalize the loops to step of +1
instead)

•  The direction vector is a vector of length n, r(i,j) such that: r(i,j)k =
jk opk ik, where opk is a relational operator (<, >, =, <=, >=, !=, *)

COMP 515, Fall 2015 (V.Sarkar)14

Implausible Distance & Direction Vectors

•  A distance vector is implausible if its leftmost nonzero
element is negative i.e., if the vector is lexicographically less
than the zero vector

•  Likewise, a direction vector is implausible if its leftmost non
"=" component is not "<"

•  No dependence in a sequential program can have an
implausible distance or direction vector as this would imply
that the sink of the dependence occurs before the source.

COMP 515, Fall 2015 (V.Sarkar)15

Direction Vector Transformation
•  Theorem 2.3. Direction Vector Transformation. Let T be a

transformation that is applied to a loop nest and that does not
rearrange the statements in the body of the loop. Then the
transformation is valid if, after it is applied, none of the direction
vectors for dependences with source and sink in the nest has a
leftmost non- “=” component that is “>” i.e., none of the
transformed direction vectors become implausible.

•  Follows from Fundamental Theorem of Dependence:
— All dependences exist
— None of the dependences have been reversed

COMP 515, Fall 2015 (V.Sarkar)16

Loop-carried and Loop-independent
Dependences

•  If in a loop statement S2 depends on S1, then there are two possible
ways of this dependence occurring:

1. S1 and S2 execute on different iterations
— This is called a loop-carried dependence.

2. S1 and S2 execute on the same iteration
— This is called a loop-independent dependence.

COMP 515, Fall 2015 (V.Sarkar)17

Simple Vectorization Algorithm
procedure vectorize (L, D)
// L is the maximal loop nest containing the statement.
// D is the dependence graph for statements in L.
find the set {S1, S2, ... , Sm} of maximal strongly-connected regions in the dependence

graph D restricted to L (Tarjan);
construct Lp from L by reducing each Si to a single node and compute Dp, the

dependence graph naturally induced on Lp by D;
let {p1, p2, ... , pm} be the m nodes of Lp numbered in an order consistent with Dp (use

topological sort);

 for i = 1 to m do begin
 if pi is a dependence cycle then

generate a DO-loop nest around the statements in pi;
 else

directly rewrite pi in Fortran 90, vectorizing it with respect to every loop
containing it;

 end
end vectorize

COMP 515, Fall 2015 (V.Sarkar)18

Problems With Simple Vectorization
 DO I = 1, N

 DO J = 1, M

S1 A(I+1,J) = A(I,J) + B

 ENDDO

 ENDDO

•  Dependence from S1 to itself with d(i, j) = (1,0)
•  Key observation: Since dependence is at level 1, we can

manipulate the other loop!
•  Can be converted to:

 DO I = 1, N

S1 A(I+1,1:M) = A(I,1:M) + B

 ENDDO

•  The simple algorithm does not capitalize on such
opportunities

COMP 515, Fall 2015 (V.Sarkar)19

Advanced Vectorization Algorithm

procedure codegen(R, k, D);
// R is the region for which we must generate code.
// k is the minimum nesting level of possible parallel loops.
// D is the dependence graph among statements in R..
find the set {S1, S2, ... , Sm} of maximal strongly-connected regions in the dependence graph D

restricted to R;
construct Rp from R by reducing each Si to a single node and
compute Dp, the dependence graph naturally induced on Rp by D;
let {p1, p2, ... , pm} be the m nodes of Rp numbered in an order

consistent with Dp (use topological sort to do the numbering);
for i = 1 to m do begin

 if pi is cyclic then begin
generate a level-k DO statement;
let Di be the dependence graph consisting of all dependence edges in D that are at level

k+1 or greater and are internal to pi;
codegen (pi, k+1, Di);
generate the level-k ENDDO statement;

 end
 else

generate a vector statement for pi in r(pi)-k+1 dimensions, where r (pi) is the number of
loops containing pi;

end

COMP 515, Fall 2015 (V.Sarkar)20

Dependence Testing

Allen and Kennedy, Chapter 3

COMP 515, Fall 2015 (V.Sarkar)21

The General Problem
DO i1 = L1, U1
DO i2 = L2, U2

...
DO in = Ln, Un

 S1 A(f1(i1,...,in),...,fm(i1,...,in)) = ...
 S2 ... = A(g1(i1,...,in),...,gm(i1,...,in))

ENDDO
...

ENDDO
ENDDO

Under what conditions is the following true for iterations α and β ?
fi (α) = gi (β) for all i, 1 ≤ i ≤ m

Note that the number of equations equals the rank of the array,
and the number of variables is twice the number of loops that enclose both

array references (two iteration vectors)

COMP 515, Fall 2015 (V.Sarkar)22

Basics: Complexity
A subscript equation is said to be

— ZIV if it contains no index (zero index variable)
— SIV if it contains only one index (single index variable)
— MIV if it contains more than one index (multiple index variables)

For Example:
 A(5,I+1,j) = A(1,I,k) + C

First subscript equation is ZIV

Second subscript equation is SIV

Third subscript equation is MIV

COMP 515, Fall 2015 (V.Sarkar)23

Dependence Testing: Overview
•  Partition subscripts of a pair of array references into

separable and coupled groups
•  Classify each subscript as ZIV, SIV or MIV
•  For each separable subscript apply single subscript test. If not

done goto next step
•  For each coupled group apply multiple subscript test
•  If still not done, merge all direction vectors computed in the

previous steps into a single set of direction vectors

COMP 515, Fall 2015 (V.Sarkar)24

Linear Diophantine Equations
•  A basic result tells us that there are values for x1,x2,

…,xn,y1,y2,…,yn so that

 What’s more, gcd(a1,…,an,b1,…,bn) is the smallest number this
is true for.

•  As a result, the equation has a solution iff gcd(a1,…,an,b1,…,bn)
divides b0 - a0

—  But the solution may not be in the region (loop iteration values) of
interest

•  Exercise: try this result on the A(4*i+2) & A(4*i+4) example

a1x1 − b1y1 + ... + anxn − bnyn = gcd(a1, ..., an, b1, ..., bn)

COMP 515, Fall 2015 (V.Sarkar)25

Real Solutions
•  Unfortunately, the gcd test is less useful then it might seem.
•  Useful technique is to show that the equation has no solutions

in region of interest ==> explore real solutions for this purpose
•  Solving h(x) = 0 is essentially an integer programming problem.

Linear programming techniques are used as an approximation.
•  Since the function is continuous, the Intermediate Value

Theorem says that a solution exists iff:

€

minR h ≤ 0 ≤maxR h

COMP 515, Fall 2015 (V.Sarkar)26

Banerjee Inequality
•  We need an easy way to calculate minR h and maxR h.

•  Definitions:

•  a+ and a- are both >= 0 and are called the positive part and
negative part of a, so that a = a+ - a-

€

hi
+ =maxRi h(xi,yi)

€

hi
− =minRi h(xi,yi)

a+ =
a a ≥ 0
0 a < 0
"

$

a− =
a a < 0
0 a ≥ 0

$
%

COMP 515, Fall 2015 (V.Sarkar)27

Banerjee Inequality
•  Theorem 3.3 (Banerjee). Let D be a direction vector, and h be

a dependence function. h = 0 can be solved in the region R
iff:

 Proof: Immediate from Lemma 3.3 and the IMV.

Hi
−(Di) ≤ b0 − a0 ≤

i=1

n

∑ Hi
+(Di)

i=1

n

∑

COMP 515, Fall 2015 (V.Sarkar)28

Preliminary Transformations

Chapter 4 of Allen and Kennedy

COMP 515, Fall 2015 (V.Sarkar)29

Loop Normalization
•  Transform loop so that

— The new stride becomes +1 (more important)
— The new lower bound becomes +1 (less important)

•  To make dependence testing as simple as possible
•  Serves as information gathering phase

COMP 515, Fall 2015 (V.Sarkar)30

Enhancing Fine-Grained Parallelism

Chapter 5 of Allen and Kennedy

COMP 515, Fall 2015 (V.Sarkar)31

Chapter 2’s Codegen
•  Codegen: tries to find parallelism using transformations of loop

distribution and statement reordering
•  If we deal with loops containing cyclic dependences early on in

the loop nest, we can potentially vectorize more loops

•  Goal in Chapter 5: To explore other transformations to exploit
parallelism

COMP 515, Fall 2015 (V.Sarkar)32

Loop Interchange: Safety
•  Theorem 5.1 Let D(i,j) be a direction vector for a dependence in

a perfect nest of loops. Then the direction vector for the same
dependence after a permutation of the loops in the nest is
determined by applying the same permutation to the elements
of D(i,j).

DO I = 1, L

 DO K = 1, N

 DO J = 1, M

 A(I+1,J+1,K) = B(I,J,K)

 ENDDO

 ENDDO

ENDDO

Dependence: (<, =, <)

DO I = 1, L

 DO J = 1, M

 DO K = 1, N

 A(I+1,J+1,K) = B(I,J,K)

 ENDDO

 ENDDO

ENDDO

Dependence: (<, <, =)

COMP 515, Fall 2015 (V.Sarkar)33

Loop Interchange: Safety
•  Theorem 5.2 A permutation of the loops in a perfect nest is

legal if and only if the direction matrix, after the same
permutation is applied to its columns, has no ">" direction as
the leftmost non-"=" direction in any row.

•  Follows from Theorem 5.1 and Theorem 2.3

 Example:
 i j k j k i
 < < = < = <

 < = > = > <

COMP 515, Fall 2015 (V.Sarkar)34

Scalar Expansion and its use in Removing Anti and
Output Dependences

 DO I = 1, N
S1 T = A(I)
S2 A(I) = B(I)
S3 B(I) = T
 ENDDO

•  Scalar Expansion:
 DO I = 1, N
S1 T$(I) = A(I)
S2 A(I) = B(I)
S3 B(I) = T$(I)
 ENDDO
 T = T$(N)

•  leads to:
S1 T$(1:N) = A(1:N)

S2 A(1:N) = B(1:N)

S3 B(1:N) = T$(1:N)

 T = T$(N)

COMP 515, Fall 2015 (V.Sarkar)35

Scalar Renaming
•  Renaming algorithm partitions all definitions and uses into equivalent

classes, each of which can occupy different memory locations.
•  Use the definition-use graph to:

— Pick definition
— Add all uses that the definition reaches to the equivalence class
— Add all definitions that reach any of the uses…
— ..until fixed point is reached

•  Example:
 IF (…) THEN

 S1 T = …

 ELSE

 S2 T = …

 ENDIF

 S3 … = T

 S4 T = …

 S5 … = T

 IF (…) THEN
 T1 = …
 ELSE
 T1 = …
 ENDIF
 … = T1
 T2 = …
 … = T2

COMP 515, Fall 2015 (V.Sarkar)36

Array Renaming
DO I = 1, N

S1 A(I) = A(I-1) + X

S2 Y(I) = A(I) + Z

S3 A(I) = B(I) + C

 ENDDO

•  S1 δ∞ S2 S2 δ∞-1 S3 S3 δ1 S1 S1 δ∞0 S3

•  Rename A(I) to A’(I):
 DO I = 1, N

S1 A’(I) = A(I-1) + X

S2 Y(I) = A’(I) + Z

S3 A(I) = B(I) + C

 ENDDO

•  Dependences remaining: S1 δ∞ S2 and S3 δ1 S1

COMP 515, Fall 2015 (V.Sarkar)37

Node Splitting
•  Sometimes Renaming fails

DO I = 1, N

S1: A(I) = X(I+1) + X(I)

S2: X(I+1) = B(I) + 32

ENDDO

•  Recurrence kept intact by renaming algorithm

COMP 515, Fall 2015 (V.Sarkar)38

Node Splitting
DO I = 1, N
S1: A(I) = X(I+1) + X(I)

S2: X(I+1) = B(I) + 32

ENDDO

•  Break critical antidependence
•  Make copy of read from which

antidependence emanates

DO I = 1, N

S1’: X$(I) = X(I+1)

S1: A(I) = X$(I) + X(I)

S2: X(I+1) = B(I) + 32

ENDDO

•  Recurrence broken
•  Vectorized to
S1’: X$(1:N) = X(2:N+1)
S2: X(2:N+1) = B(1:N) + 32
S1: A(1:N) = X$(1:N) + X(1:N)

COMP 515, Fall 2015 (V.Sarkar)39

Index-set Splitting
•  Subdivide loop into different iteration ranges to achieve partial

parallelization
— Threshold Analysis [Strong SIV, Weak Crossing SIV]

— Loop Peeling [Weak Zero SIV]

— Section Based Splitting [Variation of loop peeling]

COMP 515, Fall 2015 (V.Sarkar)40

Threshold Analysis
DO I = 1, 20

A(I+20) = A(I) + B

ENDDO

Vectorize to..

A(21:40) = A(1:20) + B

DO I = 1, 100

A(I+20) = A(I) + B

ENDDO

Strip mine to..

DO I = 1, 100, 20

DO i = I, I+19

A(i+20) = A(i) + B

ENDDO

ENDDO

Vectorize this

COMP 515, Fall 2015 (V.Sarkar)41

Loop Peeling
•  Source of dependence is a single iteration

DO I = 1, N

A(I) = A(I) + A(1)

ENDDO

Loop peeled to..

A(1) = A(1) + A(1)

DO I = 2, N

A(I) = A(I) + A(1)

ENDDO

Vectorize to..

A(1) = A(1) + A(1)

A(2:N)= A(2:N) + A(1)

COMP 515, Fall 2015 (V.Sarkar)42

Run-time Symbolic Resolution
•  “Breaking Conditions”

DO I = 1, N

A(I+L) = A(I) + B(I)

ENDDO

Transformed to..

IF(L.LE.0 .OR. L.GT.N) THEN

A(L+1:N+L) = A(1:N) + B(1:N)

ELSE

DO I = 1, N

 A(I+L) = A(I) + B(I)

ENDDO

ENDIF

COMP 515, Fall 2015 (V.Sarkar)43

Loop Skewing

•  Reshape Iteration Space to uncover parallelism

DO I = 1, N

DO J = 1, N

(=,<)

S: A(I,J) = A(I-1,J) + A(I,J-1)

(<,=)

ENDDO

ENDDO

Parallelism not apparent

COMP 515, Fall 2015 (V.Sarkar)44

Loop Skewing
•  Dependence Pattern before loop skewing

COMP 515, Fall 2015 (V.Sarkar)45

Loop Skewing
•  Do the following transformation called loop skewing

jj=J+I or J=jj-I

DO I = 1, N

DO jj = I+1, I+N

 J = jj - I (=,<)

S: A(I,J) = A(I-1,J) + A(I,J-1)

(<,<)

ENDDO

ENDDO

Note: Direction Vector Changes, but statement body remains the same

(Examples in textbook usually copy propagate J=jj-I in all uses of J)

COMP 515, Fall 2015 (V.Sarkar)46

Loop Skewing
•  Dependence pattern after loop skewing

COMP 515, Fall 2015 (V.Sarkar)47

Midterm exam reminder (Exam 1)
•  Take-home exam (3 hours)

— Open book: textbook only, no other resources
— Made available today (Thursday, Oct 15th), and needs to be

returned to Annepha Pemberton in Duncan Hall room 3080 by Oct
22nd

— Scope of exam is Chapters 1-6 of textbook

