COMP 515: Advanced Compilation for Vector and Parallel Processors

Prof. Krishna Palem
Prof. Vivek Sarkar
Department of Computer Science
Rice University
\{palem,vsarkar\}@rice.edu
https://wiki.rice.edu/confluence/display/PARPROG/COMP515

Coarse-Grain Parallelism (contd)

Chapter 6 of Allen and Kennedy

- Acknowledgment: Slides from previous offerings of COMP 515 by Prof. Ken Kennedy
-http://www.cs.rice.edu/~ken/comp515/

Chapter 6 Summary

- Coarse-Grained Parallelism
- Privatization
- Loop distribution
- Loop alignment
- Loop fusion
- Loop interchange
- Loop reversal
- Loop skewing
-Pipeline parallelism
- Scheduling

Scalar Privatization

- The analog of scalar expansion is privatization.
- Temporaries can be given separate namespaces for each iteration.

```
    DO I = 1,N
    S1
    S2
    S3
```

```
    T = A(I)
```

 T = A(I)
 A(I) = B(I)
 A(I) = B(I)
 B(I) = T
 B(I) = T
 ENDDO
    ```
S1
S2
S3
```

```
```

PARALLEL DO I = 1,N

```
```

PARALLEL DO I = 1,N
PRIVATE t
PRIVATE t

```
    t = A(I)
```

 t = A(I)
 A(I) = B(I)
 A(I) = B(I)
 B(I) = t
 B(I) = t
 ENDDO

```
ENDDO
```


Array Privatization

We need to privatize array variables.

For iteration J, upwards exposed variables are those exposed due to loop body without variables defined earlier.

```
DO I = 1,100
    T(1)=X
    DO J = 2,N
        T(J) = T(J-1)+B(I,J)
        A(I,J) = T(J)
    ENDDO
ENDDO
```

$$
u p\left(L_{1}\right)=\bigcup_{J=2}^{N}(\{T(J-1)\} \backslash\{T(n): 2 \leq n \leq j\})
$$

So for this fragment, $T(1)$ is the only exposed variable.

Array Privatization

- Using this analysis, we get the following code:

```
    PARALLEL DO I = 1,100
        PRIVATE \(\mathrm{t}(\mathrm{N})\)
S0 \(\quad t(1)=X\)
L1 DO J = 2,N
S1 \(\quad t(J)=t(J-1)+B(I, J)\)
S2 A(I, J)=t(J)
    ENDDO
    ENDDO
```


Loop Distribution

- Loop distribution can convert loop-carried dependences to loopindependent dependences.
- Consequently, it often creates opportunity for outer-loop parallelism.
- However, we must add extra barriers to keep distributed loops from executing out of order, so the overhead may override the parallel savings.

Loop Alignment

- Many carried dependencies are due to array alignment issues.
- If we can align all references, then dependencies would go away, and parallelism is possible.
- This is also related to Software Pipelining

```
DO I = 2,N
    A(I) = B(I)+C(I)
    D(I) = A(I-1)*2.0
```

ENDDO

```
DO I = 1,N ! Aligned loop
    IF (I .GT. 1) A(I) = B(I)+C(I)
    IF (I .LT.N) D(I+1) = A(I)*2.0
```

ENDDO

```
D(2) = A(1)*2.0
DO I = 2,N-1 ! Pipelined loop
    A(I) = B(I)+C(I)
    D(I+1) = A(I)*2.0
```

ENDDO
$A(N)=B(N)+C(N)$

Alignment

- There are other ways to align the loop:

$$
\begin{aligned}
& \text { DO } \quad \begin{array}{l}
=2, N \\
J=M O D(I+N-4, N-1)+2 \\
A(J)=B(J)+C \\
D(I)=A(I-1) * 2.0
\end{array} \\
& \text { ENDDO }
\end{aligned}
$$

$$
\begin{aligned}
& D(2)=A(1) * 2.0 \\
& D O I=2, N-1 \\
& \quad A(I)=B(I)+C(I) \\
& \quad D(I+1)=A(I) * 2.0 \\
& \text { ENDDO } \\
& A(N)=B(N)+C(N)
\end{aligned}
$$

Code Replication

- If an array is involved in a recurrence, then alignment isn' \dagger possible.
- If two dependencies between the same statements have different dependency distances, then alignment doesn' t work.
- We can fix the second case by replicating code:

```
DO I = 1,N
    A(I+1) = B(I)+C
    X(I) = A(I+1)+A(I)
```

ENDDO

```
DO I = 1,N
    \(A(I+1)=B(I)+C\)
    ! Replicated Statement
    IF (I .EQ 1) THEN
        \(t=A(I)\)
    ELSE
        \(t=B(I-1)+C\)
    END IF
    \(X(I)=A(I+1)+t\)
ENDDO
```


Strip Mining

- Converts available parallelism into a form more suitable for the hardware (assume THRESHOLD = minimum iters for parallel loop)

DO $I=1, N$

$$
A(I)=A(I)+B(I)
$$

ENDDO = $=>$
k $=\operatorname{MAX}(T H R E S H O L D, C E I L(N / P))$
PARALLEL DO $I=1, N, k$ $D O i=I, M I N(I+k-1, N)$

$$
A(i)=A(i)+B(i)
$$

ENDDO
END PARALLEL DO

Loop Fusion

- Loop distribution was a method for separating parallel parts of a loop.
- Our solution attempted to find the maximal loop distribution.
- The maximal distribution often finds parallelizable components too small for efficient parallelism.
- Two obvious solutions:
- Strip mine large loops to create larger granularity.
- Perform maximal distribution, and then fuse together parallelizable loops.
- Both solutions can be combined as well.

Fusion Safety: Fusion-Preventing Loop-Independent Dependences

Definition: A loop-independent dependence between statements S1 and S2 in loops L1 and L2 respectively is fusion-preventing if fusing L1 and L2 causes the dependence to be carried by the combined loop in the opposite direction.

```
    DO I \(=1, N\)
S1
    \(A(I)=B(I)+C\)
    ENDDO
DO \(\mathrm{I}=1, \mathrm{~N}\)
    \(D(I)=A(I+1)+E\)
ENDDO
```

```
DO I = 1,N
    A(I) = B(I)+C
    D(I) = A(I+1)+E
```

ENDDO

Fusion Safety: Ordering Constraint

- We shouldn't fuse loops if the fusing will violate ordering of the dependence graph.
- Ordering Constraint: Two loops can't be validly fused if there exists a path of loop-independent dependencies between them containing a loop or statement not being fused with them i.e., if fusion will result in a cycle in the resulting loop-independent dependences

Fusing L1 with L3 violates the ordering constraint. \{L1,L3\} must occur both before and after the node L2.

Fusion Profitability

Parallel loops should generally not be merged with sequential loops.

Definition: An edge between two statements in loops L1 and L2 respectively is said to be parallelism-inhibiting if after merging L1 and L2, the dependence is carried by the combined loop.

```
DO \(\mathrm{I}=1, \mathrm{~N}\)
S1 \(A(I+1)=B(I)+C\)
    ENDDO
    DO \(\mathrm{I}=1, \mathrm{~N}\)
        \(D(I)=A(I)+E\)
    ENDDO
```

```
DO I = 1,N
    A(I+1) = B(I) + C
    D(I) = A(I) + E
    ENDDO
```


Typed Fusion

- We start by classifying loops into two types: parallel and sequential.
- We next gather together all edges that inhibit efficient fusion, (i.e., that connect a sequential and a parallel loops) and call them bad edges.
- Given a graph of loop-independent dependences (V,E), we want to obtain a graph (V^{\prime}, E^{\prime}) by merging vertices of V subject to the following constraints:
- Bad Edge Constraint: vertices joined by a bad edge aren't fused.
- Ordering Constraint: vertices joined by path containing nonparallel vertex aren't fused

Typed Fusion Example

Original loop graph

After fusing parallel loops

After fusing sequential loops

Thus far ...

- Single loop methods
- Privatization
- Loop distribution
- Alignment
- Code replication
- Loop fusion
- Next, methods for perfect and imperfect loops

Loop Interchange

- Parallelization: move dependence-free loops to outermost level
- Theorem 6.3
- In a perfect nest of loops, a particular loop can be parallelized at the outermost level if and only if the column of the direction matrix for that nest contains only ' $=$ ' entries

Motivation for Loop Interchange

$$
D O I=1, N
$$

$$
D O J=1, N
$$

$$
A(I+1, J)=A(I, J)+B(I, J) \quad(<,=)
$$

ENDDO
ENDDO

- Parallelizing the J loop is OK for vectorization
- But inefficient for parallelization (N barriers)

Loop Interchange

PARALLEL DO $\mathrm{J}=1, \mathrm{~N}$

$$
\mathrm{DO} \mathrm{I}=1, \mathrm{~N}
$$

$A(I+1, J)=A(I, J)+B(I, J)$

$$
(=,<)
$$

ENDDO
END PARALLEL DO

Loop Interchange

while L is not empty
while there exist columns in M with all "="

> success := true;
$1:=$ loop with all "=" column:
remove I from L;
parallelize I at outer level:
eliminate l 's column from M :
end:
if L is not empty
select_loop_and_interchange(L):
I := outermost loop; remove I from L; sequentialize I;
remove column corresponding to I from M :
remove all rows corresponding to dependences carried by I from M :

Loop Selection

```
\(D O I=2, N+1\)
    DO \(J=2, M+1\)
        DO \(K=1, L\)
                \(A(I, J, K+1)=A(I, J-1, K)+A(I-1, J, K+2)+A(I-1, J, K)\)
```

 ENDDO
 ENDDO
 ENDDO

$$
\left.\begin{array}{c}
\text { I J K } \\
\left(\begin{array}{l}
=\ll \\
<=> \\
<=<
\end{array}\right.
\end{array}\right)
$$

Loop Selection

```
DO I = 2, N+1
    DO J = 2, M+1
        PARALLEL DO K = 1, L
                \(A(I, J, K+1)=A(I, J-1, K)+A(I-1, J, K+2)+A(I-1, J, K)\)
        ENDDO
    ENDDO
```

ENDDO

Loop Selection

- Is it possible to derive a selection heuristic that provides optimal code?
-NP-complete problem
- Assume simple approach of selecting the loop with the most ' ' directions to eliminate the max number of rows from the direction matrix
- Applying to this matrix will fail

Loop Selection

- Favor the selection of loops that must be sequentialized before parallelism can be uncovered
- If there exists a loop that can legally be moved to the outermost position and there is a dependence for which that loop has the only 's' direction, sequentialize that loop
- All such loops will need to be sequentialized at some point in the process

$$
\begin{aligned}
& \text { J K L I } \\
& {\left[\begin{array}{l}
<==< \\
=<=< \\
==< \\
== \\
<== \\
=<== \\
==<= \\
\end{array}\right]}
\end{aligned}
$$

Loop Selection

- Example of principles involved in heuristic loop selection

$$
\begin{aligned}
& \text { DO } \mathrm{J}=2, \mathrm{M} \\
& \mathrm{DO} \mathrm{I}=2, \mathrm{~N} \\
& \text { PARALLEL DO } K=2, \mathrm{~L} \\
& \mathrm{~A}(\mathrm{I}, \mathrm{~J}, \mathrm{~K})=\mathrm{A}(\mathrm{I}, \mathrm{~J}-1, \mathrm{~K})+\mathrm{A}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}-1)+ \\
& \mathrm{A}(\mathrm{I}, \mathrm{~J}+1, \mathrm{~K}+1)+\mathrm{A}(\mathrm{I}-1, \mathrm{~J}, \mathrm{~K}+1) \\
& \text { ENDDO }
\end{aligned}
$$

ENDDO ENDDO

Loop Reversal

$$
\begin{aligned}
D O I=2, & N+1 \\
D O J= & 2, M+1 \\
D O K= & 1, L \\
& A(I, J, K)=A(I, J-1, K+1)+A(I-1, J, K+1)
\end{aligned}
$$

ENDDO
ENDDO
ENDDO

$$
\left(\begin{array}{l}
\text { I J K } \\
=<> \\
<=>
\end{array}\right)
$$

Loop Reversal

```
\(D O I=2, N+1\)
        DO \(\mathrm{J}=2, \mathrm{M}+1\)
        DO \(K=L, 1,-1\)
            \(A(I, J, K)=A(I, J-1, K+1)+A(I-1, J, K+1)\)
```

 ENDDO
 ENDDO
 ENDDO

$$
\left(\begin{array}{l}
\mathrm{IJK} \\
=<> \\
<=>
\end{array}\right) \quad \square \quad\left(\begin{array}{l}
\mathrm{IJK} \\
<=< \\
<=<
\end{array}\right)
$$

After Loop Reversal \& Interchange

$$
D O K=L, 1,-1
$$

$$
\text { PARALLEL DO I }=2, N+1
$$

$$
\text { PARALLEL DO J = } 2, ~ M+1
$$

$$
A(I, J, K)=A(I, J-1, K+1)+A(I-1, J, K+1)
$$

END PARALLEL DO
END PARALLEL DO KIJ
ENDDO

$$
\binom{<=<}{\ll=}
$$

- Increase the range of options available for loop selection heuristics

Loop Skewing

$$
\begin{aligned}
& D O I=2, N+1 \\
& \begin{array}{l}
\text { DO } J=2, M+1 \\
\\
D O K=1, L \\
\\
\quad A(I, J, K)=A(I, J-1, K)+A(I-1, J, K) \\
\\
\quad B(I, J, K+1)=B(I, J, K)+A(I, J, K) \\
\\
\text { ENDDO } \\
\text { ENDDO }
\end{array}
\end{aligned}
$$

ENDDO
I J K

$$
\left(\begin{array}{l}
=<= \\
<== \\
==< \\
===
\end{array}\right\}
$$

Loop Skewing

- Skewed using $k=K+I+J$ yield:

$$
D O I=2, N+1
$$

$$
D O J=2, M+1
$$

$$
D O k=I+J+1, I+J+L
$$

J, k-I-J)

$$
A(I, J, k-I-J)=A(I, J-1, k-I-J)+A(I-1
$$

$$
k-I-J)
$$

$$
B(I, J, k-I-J+1)=B(I, J, k-I-J)+A(I, J,
$$

ENDDO
ENDDO l Jk
ENDDO $\left.\quad \begin{array}{l}=\ll \\ <=< \\ ==< \\ === \\ \end{array}\right)$

Loop Skewing

DO $k=5, N+M+1$
PARALLEL DO $I=\operatorname{MAX}(2, k-M-L-1), \operatorname{MIN}(N+1, k-L-2)$
PARALLEL DO J = MAX(2, k-I-L), MIN(M+1,k-I-1)

$$
\begin{aligned}
& A(I, J, k-I-J)=A(I, J-1, k-I-J)+A(I-1, J, k-I-J) \\
& B(I, J, k-I-J+1)=B(I, J, k-I-J)+A(I, J, k-I-J)
\end{aligned}
$$

ENDDO

ENDDO
ENDDO

$$
\left.\begin{array}{l}
\text { kI J } \\
\left(\begin{array}{l}
<=< \\
\ll= \\
<== \\
===
\end{array}\right.
\end{array}\right)
$$

Loop Skewing

- Transforms skewed loop into one that can be interchanged to the outermost position without changing the meaning of the program
- Can be used to transform the skewed loop in such a way that, after outward interchange, it will carry all dependences formerly carried by the loop with respect to which it is skewed

$$
\left.\begin{array}{l}
\text { k I J } \\
\left(\begin{array}{l}
<=< \\
\ll= \\
<== \\
===
\end{array}\right.
\end{array}\right)
$$

Loop Skewing

- Selection Heuristics

1. Parallelize as many loops as possible
2. Sequentialize at most one loop to find parallelism in the current outermost loop
3. If 1 and 2 fails, try skewing
4. If 3 fails, sequentialize the loop that can be moved to the outermost position and cover the most other loops

Pipeline Parallelism

- Fortran command DOACROSS
- Useful where parallelization is not available
- High synchronization costs on old multiprocessors
- Cheaper on-chip synchronization on multicore
$D O I=2, N-1$
DO $\mathrm{J}=2, \mathrm{~N}-1$
$A(I, J)=.25$ * $(A(I-1, J)+A(I, J-1)+A(I+1, J)+A(I, J+1))$
ENDDO
ENDDO

Pipeline Parallelism

```
POST (EV(1, 2))
DOACROSS I = \(2, \mathrm{~N}-1\)
    DO \(\mathrm{J}=2, \mathrm{~N}-1\)
        WAIT (EV(I-1, J))
        \(A(I, J)=.25\) * \((A(I-1, J)+A(I, J-1)+A(I+1, J)+A(I, J+1))\)
        POST (EV(I, J))
    ENDDO
ENDDO
```


Pipeline Parallelism

| $\mathrm{I}=2$ | $\mathrm{I}=3$ | | , |
| :---: | :---: | :---: | :---: |
| $\mathrm{J}=2$ | | | |
| $\mathrm{J}=3$ | $\mathrm{J}=2$ | $\mathrm{I}=4$ | |
| $\mathrm{J}=4$ | $\mathrm{J}=3$ | $\mathrm{J}=2$ | $\mathrm{I}=5$ |
| $\mathrm{J}=5$ | $\mathrm{J}=4$ | $\mathrm{J}=3$ | $\mathrm{J}=2$ |
| $\mathrm{J}=6$ | $\mathrm{J}=5$ | $\mathrm{J}=4$ | $\mathrm{J}=3$ |
| $\mathrm{J}=7$ | $\mathrm{J}=6$ | $\mathrm{J}=5$ | $\mathrm{J}=4$ |

Pipeline Parallelism with Strip Mining

```
POST (EV(1, 1))
DOACROSS I \(=2, \mathrm{~N}-1\)
    \(K=0\)
    DO J = 2, N-1, \(2!C H U N K\) SIZE \(=2\)
        \(K=K+1\)
        WAIT (EV(I-1,K))
        DO m = J, MIN(J+1, N-1)
        \(A(I, m)=.25\) * \((A(I-1, m)+A(I, m-1)+A(I+1, m)+A(I, m+1))\)
    ENDDO
    POST (EV(I, K+1))
    ENDDO
ENDDO
```


Pipeline Parallelism

