COMP 515: Advanced Compilation
for Vector and Parallel Processors

Prof. Vivek Sarkar

Department of Computer Science
Rice University
vsarkar®@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 13 20 October 2015

Midterm exam reminder (Exam 1)

* Take-home exam (3 hours)
—Open book: textbook only, no other resources

—Made available on Thursday, Oct 15™, and needs to be returned to
Annepha Pemberton in Duncan Hall room 3080 by Oct 22"

—Scope of exam is Chapters 1-6 of textbook

2 COMP 515, Fall 2015 (V.Sarkar)

Control Dependences

Chapter 7

Control Dependences

* Constraints posed by control flow

DO 100 I =1, N

S, IF (A(I-1) .GT. 0.0) GO TO 100 s2 61 s1
S, A(I) = A(I) + B(I)*C

100 CONTINUE

If we vectorize by only considering data dependences ...
S, A(1l:N) = A(1:N) + B(1l:N)*C
DO 100 I = 1, N

S, IF (A(I-1).GT. 0.0) GO TO 100
100 CONTINUE

..we get the wrong answer

* We are missing dependences

* There is a dependence from S; to S, - a control dependence

Control Dependences

* Two strategies to deal with control dependences:

1) If-conversion: expose by converting control dependences to data
dependences. Used for vectorization
- Also supported in SIMT hardware (e.g., GPGPUs) which

automatically masks out statements with control conditions =
false

2) Explicitly compute control dependences. Used for coarse-grained

parallelism, or in cases where guarded execution is inefficient for

vectorization.

If-conversion

* Underlying Idea: Convert statements affected by branches to
conditionally executed statements

DO 100 I = 1, N
S, IF (A(I-1).GT. 0.0) GO TO 100

s, A(I) = A(I) + B(I)*C
100 CONTINUE

can be converted to:

-1).LE. 0.0) A(I) = A(I) + B(I)*C

If-conversion

DO 100 I =1, N
s, IF (A(I-1).GT. 0.0) GO TO 100
S, A(I) = A(I) + B(I) * C
S, B(I) = B(I) + A(I)
100 CONTINUE

* can be converted to:

DO 100 I =1, N
S, IF (A(I-1).LE. 0.0) A(I) = A(I) + B(I) * C
S, IF (A(I-1).LE. 0.0) B(I) = B(I) + A(I)
100 CONTINUE

* And then vectorized using the Fortran WHERE statement:
DO 100 I =1, N
Sy IF (A(I-1).LE. 0.0) A(I) = A(I) + B(I) * C

100 CONTINUE
Sy WHERE (A(O:N-1).LE. 0.0) B(1l:N) = B(1l:N) + A(1l:N)

If-conversion

* If-conversion assumes a target notation of guarded execution

in which each statement implicitly contains a logical expression
controlling its execution

S, IF (A(I-1).GT. 0.0)

GO TO 100
S, =

A(I) = A(I) + B(I)*C
100 CONTINUE

* with guarded execution instead:

S, M= A(I-1).GT. 0.0
s, IF (.NOT. M) A(I) =
100 CONTINUE

A(I) + B(I)*C

Branch Classification

* Forward Branch: transfers control to a target that occurs
lexically after the branch but at the same level of nesting

* Backward Branch: transfers control to a statement occurring
lexically before the branch but at the same level of nesting

* Exit Branch: terminates one or more loops by transferring
control to a target outside a loop nest

— The break and return statements in C are examples of exit
branches, when they occur inside a loop

If-conversion

* If-conversion is a composition of two different
transformations:

1. Branch relocation
2. Branch removal

Branch removal for If-conversion

* Basic idea:
— Make a pass through the program.

— Maintain a Boolean expression cc that represents the condition that
must be true for the current expression to be executed

—On encountering a branch, conjoin the controlling expression into cc

—On encountering a target of a branch, its controlling expression is
disjoined into cc

11

Branch Removal: Forward Branches

* Remove forward branches by inserting appropriate guards
DO 100 I = 1,N
C, IF (A(I).GT.10) GO TO 60

20 A(I) = A(I) + 10
C, IF (B(I).GT.10) GO TO 80
40 B(I) = B(I) + 10
60 A(I) = B(I) + A(I)
80 B(I) = A(I) - 5
ENDDO
> 4

DO 100 I = 1,N
ml = A(I).GT.10

20 TF(.NOT.ml) A(I) = A(I) + 10
IF(.NOT.ml) m2 = B(I).GT.10
40 ITF(.NOT.ml.AND..NOT.m2) B(I) = B(I) + 10
60 TF(.NOT.ml.AND..NOT.m2.0R.m1)A(I) = B(I) + A(I)
80 TF(.NOT.ml.AND..NOT.m2.0R.ml1.0R..NOT.ml
.AND.m2) B(I) = A(I) - 5
ENDDO

12

Branch Removal: Forward Branches

* We can simplify to:

DO 100 I = 1,N

ml = A(I).GT.10
20 IF(.NOT.ml) A(I) = A(I) + 10
IF(.NOT.ml) m2 = B(I).GT.10
40 IF(.NOT.ml.AND..NOT.m2)
B(I) = B(I) + 10

60 IF (ml.0OR..NOT.m2)
A(I) = B(I) + A(I)
80 B(I) = A(I) - 5
ENDDO

* and then vectorize to:

ml(l:N) = A(1:N).GT.10
20 WHERE (.NOT.ml (1:N)) A(1:N) = A(l:N) + 10
WHERE (.NOT.ml1 (1:N)) m2(1:N) = B(1l:N).GT.10

40 WHERE (.NOT.m1 (1:N) .AND..NOT.m2 (1:N))
B(1:N) = B(1:N) + 10

60 WHERE (ml1 (1:N) .OR..NOT.m2 (1:N))
A(1:N) = B(1l:N) + A(1l:N)

80 B(l:N) = A(1:N) - 5

13

Removal of Forward Branches: Correctness

* To show correctness we must establish:

—the guard for statement instance in the new program is true if and
only if the corresponding statement in the old program is executed,

- unless the statement has been introduced by the compiler to
capture a guard variable value, which must be executed at the
point the conditional expression would have been evaluated

—the order of execution of statements in the new program with true
guards is the same as the order of execution of those statements
in the original program

— Any expression with side effects is evaluated exactly as many times
in the new program as in the old program

14

Control Dependences

* Two strategies to deal with control dependences:

1) If-conversion: expose by converting control dependences to data
dependences. Used for vectorization
- Also supported in SIMT hardware (e.g., GPGPUs) which

automatically masks out statements with control conditions =
false

2) Explicitly compute control dependences. Used for coarse-grained

parallelism, or in cases where guarded execution is inefficient for

vectorization.

15

Control Flow Graph Definition (Recap)

A control flow graph CFG = (N, E.,T.) consists of

e N., a set of nodes. A node represents a straight-line
sequence of operations with no intervening control flow i.e
a basic block.

e . C N. x N. x Labels, a set of labeled edges.

e T., a node type mapping. T.(n) identifies the type of node
n as one of: START, STOP, OTHER.

We assume that CFG contains a unique START node and a
unique STOP node, and that for any node N in CFG, there
exist directed paths from START to N and from N to STOP.

16

Control Flow Graph: Example

F
do {
S1;
if (C1) continue;
do {
S2;
} while (C2);
S3;
} while (C3);
CONTROL FLOW GRAPH

17

Dominators: Definition

Node V dominates another node W # V' if and only if every
directed path from START to W in CFG contains V.

Define dom(W) = {V | V dominates W}, the set of dominators
of node W.

Consider any simple path from START to W containing W's
dominators in the order Vq,...,V,. Then all simple paths from
START to W must contain W's dominators in the same order.
The element closest to W, V,, = idom (W), is called the
immediate dominator of W.

The idom relation can be represented as a directed tree with
root = START, and parent(W) = idom(W).

18

Postdominators: Definition

Node W postdominates another node V #= W if and only if
every directed path from V to STOP in CFG contains W.

Define pdom (V) = {W | W postdominates V'}, the set of
postdominators of node V.

Consider any simple path from V to STOP containing V's
postdominators in the order Wy,...,W,. Then all simple paths
from V to STOP must contain V's postdominators in the same
order. The element closest to V, Wy = ipdom(V), is called the
immediate postdominator of V.

The ipdom relation can be represented as a directed tree with
root =is STOP and parent(V') = ipdom (V).

19

Postdominator Trees

STO

v/

CONTROL FLOW GRAPH

Examples of Dominator and

STOP

/

3

yd

2

/

1

N

START

POST-DOMINATOR TREE

START

/

1

/

2

/

3

20

DOMINATOR TREE

N\

STOP

Control Dependence: Definition

Node Y is control dependent on node X with label L in CFG if
and only if

1. there exists a nonnull path X — Y, starting with the edge
labeled L, such that Y post-dominates every node, W,
strictly between X and Y in the path, and

2. Y does not post-dominate X.

Reference: “The Program Dependence Graph and its Use in
Optimization”, J. Ferrante et al, ACM TOPLAS, 1987

21

Example: Acyclic CFG and its
Control Dependence Graph (CDG)

START STOP
T ¢ / \\
1 START 3 1
<0 >0
POSTDOMINATOR TREE
=0
2 START

STOP

CONTROL FLOW GRAPH CONTROL DEPENDENCE GRAPH

22

Control Dependence: Discussion

* A node x in directed graph G with a single exit node
postdominates node y in G if any path from y to the exit node
of 6 must pass through x.

* A statement y is said to be control dependent on another
statement x if:

—there exists a non-trivial path from x to y such that every
statement z=x in the path is postdominated by y and

—x is not postdominated by y.
* In other words, a control dependence exists from S1 to S2 if

one branch out of S1 forces execution of S2 and another
doesn’t

* Note that control dependences also can be seen at as a
property of basic blocks (depends on CFG granularity)

23

Program Dependence Graph

Program Dependence Graph (PDG) consists of
1. Set of nodes, as in the CFG

2. Control dependence edges

3. Data dependence edges

Together, the control and data dependence edges dictate
whether or not a proposed code transformation is legal.

24

Example: Cyclic CFG and its CDG

STOP
RN
3 ENTRY
/
2
/
1
POST-DOMINATOR TREE

CONTROL FLOW GRAPH

CONTROL DEPENDENCE GRAPH

25

CDG for a Cyclic CFG

Problem: CFG and CDG can have different loop/interval
structures, in general

Solution: Compute CDG only for acyclic CFG's e.q.

1. Restrict construction and use of CDG’'s to innermost
intervals with acyclic CFG's.

2. Compute CDG for acyclic Forward Control Flow Graph),
which captures CFG’'s loop structure by insertion of pseudo
nodes and edges. [Cytron, Ferrante, Sarkar 1990]

3. Compute CDG for each interval with an acyclic CFG,
treating subintervals as atomic nodes.

26

Control Dependence and Parallelization

* From Chapter 2: Most loop transformations are unaffected by
loop-independent dependences

— A forward-branch need not inhibit coarse-grain parallelization

* Iteration-reordering transformations like loop reversal, loop
skewing, strip mining, index-set splitting, loop interchange do
not affect loop-independent dependences

* Statement reordering transformations might be problematic:
loop fusion, loop distribution

— Distribution can be performed by including control dependences in
recurrence analysis, and performing scalar expansion on branch
condition

—Fusion of loops that do not contain exit branches is also possible

27

Loop Distribution

* Example: Control Dependence Graph

for loop body

DO I =1, N

1 IF (A(I).NE.O) THEN
2 IF (B(I)/A(I).GT.1) GOTO 4
ENDIF
3 A(I) = B(I)
GOTO 8
IF (A(I).GT.T) THEN
5 T = (B(I) - A(I)) + T
ELSE
6 T = (T + B(I)) - A(I)
7 B(I) = A(I)
ENDIF
8 C(I) = B(I) + C(I)
ENDDO

28

Loop Distribution

* Fusion into "like" regions
—Loop 1 is parallel
—Loop 2 is sequential
—Loop 3 is parallel

DO I =1, N

1 IF (A(I).NE.O) THEN

2 IF (B(I)/A(I).GT.1) GOTO 4
ENDIF

3 A(I) = B(I)
GOTO 8
IF (A(I).GT.T) THEN

5 T = (B(I) - A(I)) + T
ELSE

6 T = (T + B(I)) - A(I)

7 B(I) = A(I)

Need execution variables E2(T)

ENDIF and E4(I) to hold result of

C(I) = B(I) + C(I) branches at statement 2 and 4
ENDDO

(e¢]

29

