
COMP 515: Advanced Compilation
for Vector and Parallel Processors

Prof. Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 13 20 October 2015

COMP 515, Fall 2015 (V.Sarkar)2

Midterm exam reminder (Exam 1)
•  Take-home exam (3 hours)

— Open book: textbook only, no other resources
— Made available on Thursday, Oct 15th, and needs to be returned to

Annepha Pemberton in Duncan Hall room 3080 by Oct 22nd
— Scope of exam is Chapters 1-6 of textbook

3

Control Dependences

Chapter 7

4

Control Dependences
•  Constraints posed by control flow

 DO 100 I = 1, N

S1 IF (A(I-1) .GT. 0.0) GO TO 100

S2 A(I) = A(I) + B(I)*C

100 CONTINUE

If we vectorize by only considering data dependences ...
S2 A(1:N) = A(1:N) + B(1:N)*C

 DO 100 I = 1, N

S1 IF (A(I-1).GT. 0.0) GO TO 100

 100 CONTINUE

…we get the wrong answer
•  We are missing dependences
•  There is a dependence from S1 to S2 - a control dependence

S2 δ1 S1

4

5

Control Dependences
•  Two strategies to deal with control dependences:

1) If-conversion: expose by converting control dependences to data
dependences. Used for vectorization

–  Also supported in SIMT hardware (e.g., GPGPUs) which
automatically masks out statements with control conditions =
false

2) Explicitly compute control dependences. Used for coarse-grained
parallelism, or in cases where guarded execution is inefficient for
vectorization.

If-conversion
•  Underlying Idea: Convert statements affected by branches to

conditionally executed statements

 DO 100 I = 1, N

S1 IF (A(I-1).GT. 0.0) GO TO 100

S2 A(I) = A(I) + B(I)*C

100 CONTINUE

can be converted to:

 DO I = 1, N

 IF (A(I-1).LE. 0.0) A(I) = A(I) + B(I)*C

 ENDDO

If-conversion
 DO 100 I = 1, N

S1 IF (A(I-1).GT. 0.0) GO TO 100

S2 A(I) = A(I) + B(I) * C

S3 B(I) = B(I) + A(I)

100 CONTINUE

•  can be converted to:
 DO 100 I = 1, N

S2 IF (A(I-1).LE. 0.0) A(I) = A(I) + B(I) * C

S3 IF (A(I-1).LE. 0.0) B(I) = B(I) + A(I)

100 CONTINUE

•  And then vectorized using the Fortran WHERE statement:
 DO 100 I = 1, N

S2 IF (A(I-1).LE. 0.0) A(I) = A(I) + B(I) * C

100 CONTINUE

S3 WHERE (A(0:N-1).LE. 0.0) B(1:N) = B(1:N) + A(1:N)

If-conversion
•  If-conversion assumes a target notation of guarded execution

in which each statement implicitly contains a logical expression
controlling its execution

S1 IF (A(I-1).GT. 0.0) GO TO 100

S2 A(I) = A(I) + B(I)*C

100 CONTINUE

•  with guarded execution instead:

S1 M = A(I-1).GT. 0.0

S2 IF (.NOT. M) A(I) = A(I) + B(I)*C

100 CONTINUE

9

Branch Classification

•  Forward Branch: transfers control to a target that occurs
lexically after the branch but at the same level of nesting

•  Backward Branch: transfers control to a statement occurring
lexically before the branch but at the same level of nesting

•  Exit Branch: terminates one or more loops by transferring
control to a target outside a loop nest
— The break and return statements in C are examples of exit

branches, when they occur inside a loop

If-conversion
•  If-conversion is a composition of two different

transformations:
1. Branch relocation
2. Branch removal

11

Branch removal for If-conversion
•  Basic idea:

— Make a pass through the program.
— Maintain a Boolean expression cc that represents the condition that

must be true for the current expression to be executed
— On encountering a branch, conjoin the controlling expression into cc
— On encountering a target of a branch, its controlling expression is

disjoined into cc

11

12

Branch Removal: Forward Branches
•  Remove forward branches by inserting appropriate guards

DO 100 I = 1,N

C1 IF (A(I).GT.10) GO TO 60

20 A(I) = A(I) + 10

C2 IF (B(I).GT.10) GO TO 80

40 B(I) = B(I) + 10

60 A(I) = B(I) + A(I)

80 B(I) = A(I) - 5

 ENDDO

è
 DO 100 I = 1,N
 m1 = A(I).GT.10
20 IF(.NOT.m1) A(I) = A(I) + 10

 IF(.NOT.m1) m2 = B(I).GT.10
40 IF(.NOT.m1.AND..NOT.m2) B(I) = B(I) + 10
60 IF(.NOT.m1.AND..NOT.m2.OR.m1)A(I) = B(I) + A(I)
80 IF(.NOT.m1.AND..NOT.m2.OR.m1.OR..NOT.m1

 .AND.m2) B(I) = A(I) - 5
 ENDDO

13

Branch Removal: Forward Branches
•  We can simplify to:

 DO 100 I = 1,N

 m1 = A(I).GT.10

20 IF(.NOT.m1) A(I) = A(I) + 10

 IF(.NOT.m1) m2 = B(I).GT.10

40 IF(.NOT.m1.AND..NOT.m2)

 B(I) = B(I) + 10

60 IF(m1.OR..NOT.m2)

 A(I) = B(I) + A(I)

80 B(I) = A(I) - 5

 ENDDO

•  and then vectorize to:
 m1(1:N) = A(1:N).GT.10

20 WHERE(.NOT.m1(1:N)) A(1:N) = A(1:N) + 10

 WHERE(.NOT.m1(1:N)) m2(1:N) = B(1:N).GT.10

40 WHERE(.NOT.m1(1:N).AND..NOT.m2(1:N))

 B(1:N) = B(1:N) + 10

60 WHERE(m1(1:N).OR..NOT.m2(1:N))

 A(1:N) = B(1:N) + A(1:N)

80 B(1:N) = A(1:N) - 5

13

14

Removal of Forward Branches: Correctness

•  To show correctness we must establish:
— the guard for statement instance in the new program is true if and

only if the corresponding statement in the old program is executed,
–  unless the statement has been introduced by the compiler to

capture a guard variable value, which must be executed at the
point the conditional expression would have been evaluated

— the order of execution of statements in the new program with true
guards is the same as the order of execution of those statements
in the original program

— Any expression with side effects is evaluated exactly as many times
in the new program as in the old program

15

Control Dependences
•  Two strategies to deal with control dependences:

1) If-conversion: expose by converting control dependences to data
dependences. Used for vectorization

–  Also supported in SIMT hardware (e.g., GPGPUs) which
automatically masks out statements with control conditions =
false

2) Explicitly compute control dependences. Used for coarse-grained
parallelism, or in cases where guarded execution is inefficient for
vectorization.

16

Control Flow Graph Definition (Recap)

17

Control Flow Graph: Example

18

Dominators: Definition

19

Postdominators: Definition

20

Examples of Dominator and
Postdominator Trees

21

Control Dependence: Definition

22

Example: Acyclic CFG and its  
Control Dependence Graph (CDG)

23

Control Dependence: Discussion
•  A node x in directed graph G with a single exit node

postdominates node y in G if any path from y to the exit node
of G must pass through x.

•  A statement y is said to be control dependent on another
statement x if:
— there exists a non-trivial path from x to y such that every

statement z≠x in the path is postdominated by y and
— x is not postdominated by y.

•  In other words, a control dependence exists from S1 to S2 if
one branch out of S1 forces execution of S2 and another
doesn’t

•  Note that control dependences also can be seen at as a
property of basic blocks (depends on CFG granularity)

23

24

Program Dependence Graph

25

Example: Cyclic CFG and its CDG

26

CDG for a Cyclic CFG

27

Control Dependence and Parallelization
•  From Chapter 2: Most loop transformations are unaffected by

loop-independent dependences
— A forward-branch need not inhibit coarse-grain parallelization

•  Iteration-reordering transformations like loop reversal, loop
skewing, strip mining, index-set splitting, loop interchange do
not affect loop-independent dependences

•  Statement reordering transformations might be problematic:
loop fusion, loop distribution
— Distribution can be performed by including control dependences in

recurrence analysis, and performing scalar expansion on branch
condition

— Fusion of loops that do not contain exit branches is also possible

27

28

Loop Distribution
•  Example: Control Dependence Graph

 for loop body

DO I = 1, N

1 IF (A(I).NE.0) THEN

2 IF (B(I)/A(I).GT.1) GOTO 4

 ENDIF

3 A(I) = B(I)

 GOTO 8

4 IF (A(I).GT.T) THEN

5 T = (B(I) - A(I)) + T

 ELSE

6 T = (T + B(I)) – A(I)

7 B(I) = A(I)

 ENDIF

8 C(I) = B(I) + C(I)

 ENDDO

START
t t

28

29

Loop Distribution
•  Fusion into "like" regions

— Loop 1 is parallel
— Loop 2 is sequential
— Loop 3 is parallel

DO I = 1, N

1 IF (A(I).NE.0) THEN

2 IF (B(I)/A(I).GT.1) GOTO 4

 ENDIF

3 A(I) = B(I)

 GOTO 8

4 IF (A(I).GT.T) THEN

5 T = (B(I) - A(I)) + T

 ELSE

6 T = (T + B(I)) – A(I)

7 B(I) = A(I)

 ENDIF

8 C(I) = B(I) + C(I)

 ENDDO

 Need execution variables E2(I)
and E4(I) to hold result of
branches at statement 2 and 4

29

