COMP 515: Advanced Compilation for Vector and Parallel Processors

Prof. Vivek Sarkar Department of Computer Science Rice University <u>vsarkar@rice.edu</u>

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

Midterm exam reminder (Exam 1)

- Take-home exam (3 hours)
 - -Open book: textbook only, no other resources
 - -Made available on Thursday, Oct 15th, and needs to be returned to Annepha Pemberton in Duncan Hall room 3080 by Oct 22nd
 - -Scope of exam is Chapters 1-6 of textbook

Chapter 7

Constraints posed by control flow

DO 100 I = 1, N S_1 IF (A(I-1) .GT. 0.0) GO TO 100 S_2 A(I) = A(I) + B(I) *C 100 CONTINUE

 $\textbf{S_2} \hspace{0.1 cm} \delta_1 \hspace{0.1 cm} \textbf{S_1}$

If we vectorize by only considering data dependences ...

```
S<sub>2</sub> A(1:N) = A(1:N) + B(1:N) *C
DO 100 I = 1, N
S<sub>1</sub> IF (A(I-1).GT. 0.0) GO TO 100
100 CONTINUE
```

...we get the wrong answer

- We are missing dependences
- There is a dependence from S_1 to S_2 a control dependence

• Two strategies to deal with control dependences:

1) <u>If-conversion</u>: expose by converting control dependences to data dependences. Used for vectorization

 Also supported in SIMT hardware (e.g., GPGPUs) which automatically masks out statements with control conditions = false

2) Explicitly compute control dependences. Used for coarse-grained parallelism, or in cases where guarded execution is inefficient for vectorization.

• Underlying Idea: Convert statements affected by branches to conditionally executed statements

DO 100 I = 1, N S₁ IF (A(I-1).GT. 0.0) GO TO 100 S₂ A(I) = A(I) + B(I)*C 100 CONTINUE

can be converted to:

```
DO I = 1, N
IF (A(I-1).LE. 0.0) A(I) = A(I) + B(I)*C
ENDDO
```

```
DO 100 I = 1, N

S_1 IF (A(I-1).GT. 0.0) GO TO 100

S_2 A(I) = A(I) + B(I) * C

S_3 B(I) = B(I) + A(I)

100 CONTINUE
```

• can be converted to:

DO 100 I = 1, N S_2 IF (A(I-1).LE. 0.0) A(I) = A(I) + B(I) * C S_3 IF (A(I-1).LE. 0.0) B(I) = B(I) + A(I) 100 CONTINUE

And then vectorized using the Fortran WHERE statement:

```
DO 100 I = 1, N
```

```
S_2 IF (A(I-1).LE. 0.0) A(I) = A(I) + B(I) * C
```

```
100 CONTINUE
```

```
S_3 WHERE (A(0:N-1).LE. 0.0) B(1:N) = B(1:N) + A(1:N)
```

• If-conversion assumes a target notation of guarded execution in which each statement implicitly contains a logical expression controlling its execution

 S_1 IF (A(I-1).GT. 0.0) GO TO 100 S_2 A(I) = A(I) + B(I)*C 100 CONTINUE

• with guarded execution instead:

 $S_1 = A(I-1).GT. 0.0$ $S_2 = IF (.NOT. M) A(I) = A(I) + B(I)*C$ 100 CONTINUE

- Forward Branch: transfers control to a target that occurs lexically after the branch but at the same level of nesting
- Backward Branch: transfers control to a statement occurring lexically before the branch but at the same level of nesting
- Exit Branch: terminates one or more loops by transferring control to a target outside a loop nest
 - -The break and return statements in C are examples of exit branches, when they occur inside a loop

- If-conversion is a composition of two different transformations:
 - 1. Branch relocation
 - 2. Branch removal

Branch removal for If-conversion

- Basic idea:
 - -Make a pass through the program.
 - -Maintain a Boolean expression cc that represents the condition that must be true for the current expression to be executed
 - -On encountering a branch, conjoin the controlling expression into cc
 - -On encountering a target of a branch, its controlling expression is disjoined into cc

Branch Removal: Forward Branches

• Remove forward branches by inserting appropriate guards

```
DO 100 I = 1, N
C_1 IF (A(I).GT.10) GO TO 60
20 \quad A(I) = A(I) + 10
C<sub>2</sub> IF (B(I).GT.10) GO TO 80
40 B(I) = B(I) + 10
60
   A(I) = B(I) + A(I)
80
   B(I) = A(I) - 5
    ENDDO
→
     DO 100 I = 1, N
        m1 = A(I).GT.10
 20
       IF(.NOT.m1) A(I) = A(I) + 10
       IF(.NOT.m1) m2 = B(I).GT.10
 40
       IF(.NOT.m1.AND..NOT.m2) B(I) = B(I) + 10
 60
      IF(.NOT.m1.AND..NOT.m2.OR.m1)A(I) = B(I) + A(I)
 80
       IF(.NOT.m1.AND..NOT.m2.OR.m1.OR..NOT.m1
            .AND.m2) B(I) = A(I) - 5
      ENDDO
```

Branch Removal: Forward Branches

• We can simplify to:

• and then vectorize to:

m1(1:N) = A(1:N).GT.10

- 20 WHERE(.NOT.ml(1:N)) A(1:N) = A(1:N) + 10 WHERE(.NOT.ml(1:N)) m2(1:N) = B(1:N).GT.10
- 40 WHERE(.NOT.m1(1:N).AND..NOT.m2(1:N))

B(1:N) = B(1:N) + 10

A(1:N) = B(1:N) + A(1:N)

80 B(1:N) = A(1:N) - 5

Removal of Forward Branches: Correctness

- To show correctness we must establish:
 - —the guard for statement instance in the new program is true if and only if the corresponding statement in the old program is executed,
 - unless the statement has been introduced by the compiler to capture a guard variable value, which must be executed at the point the conditional expression would have been evaluated
 - —the order of execution of statements in the new program with true guards is the same as the order of execution of those statements in the original program
 - Any expression with side effects is evaluated exactly as many times in the new program as in the old program

• Two strategies to deal with control dependences:

1) If-conversion: expose by converting control dependences to data dependences. Used for vectorization

 Also supported in SIMT hardware (e.g., GPGPUs) which automatically masks out statements with control conditions = false

2) <u>Explicitly compute control dependences</u>. Used for coarse-grained parallelism, or in cases where guarded execution is inefficient for vectorization.

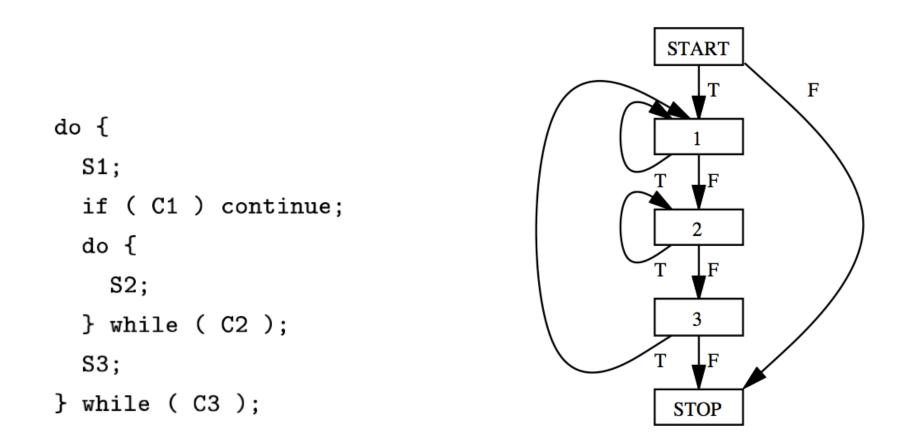
Control Flow Graph Definition (Recap)

A control flow graph $CFG = (N_c, E_c, T_c)$ consists of

- N_c, a set of nodes. A node represents a straight-line sequence of operations with no intervening control flow i.e a basic block.
- $E_c \subseteq N_c \times N_c \times Labels$, a set of *labeled* edges.
- T_c , a node type mapping. $T_c(n)$ identifies the type of node n as one of: START, STOP, OTHER.

We assume that CFG contains a unique START node and a unique STOP node, and that for any node N in CFG, there exist directed paths from START to N and from N to STOP.

Control Flow Graph: Example



CONTROL FLOW GRAPH

Dominators: Definition

Node V dominates another node $W \neq V$ if and only if every directed path from START to W in CFG contains V.

Define $dom(W) = \{V \mid V \text{ dominates } W\}$, the set of *dominators* of node W.

Consider any simple path from *START* to *W* containing *W*'s dominators in the order V_1, \ldots, V_k . Then all simple paths from *START* to *W* must contain *W*'s dominators in the same order. The element closest to *W*, $V_k = idom(W)$, is called the *immediate dominator* of *W*.

The *idom* relation can be represented as a directed tree with root = START, and parent(W) = idom(W).

Postdominators: Definition

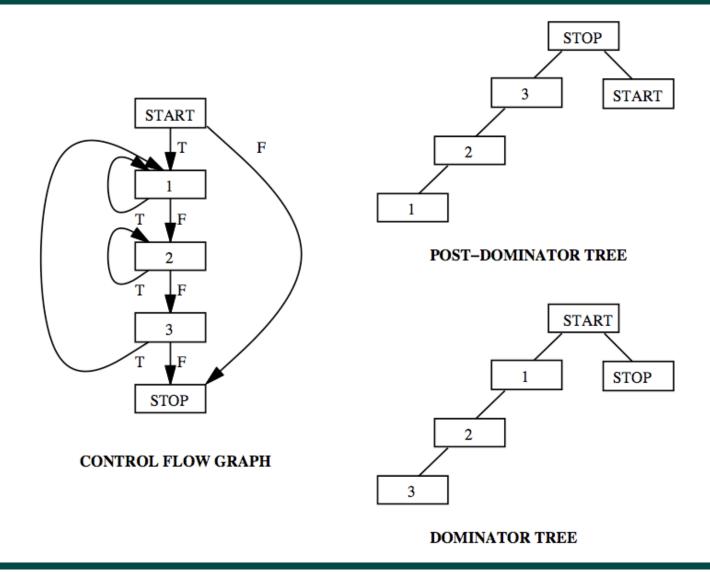
Node W postdominates another node $V \neq W$ if and only if every directed path from V to STOP in CFG contains W.

Define $pdom(V) = \{W \mid W \text{ postdominates } V\}$, the set of *postdominators* of node V.

Consider any simple path from V to STOP containing V's postdominators in the order W_1, \ldots, W_k . Then all simple paths from V to STOP must contain V's postdominators in the same order. The element closest to V, $W_1 = ipdom(V)$, is called the *immediate postdominator* of V.

The *ipdom* relation can be represented as a directed tree with root = is STOP and parent(V) = ipdom(V).

Examples of Dominator and Postdominator Trees



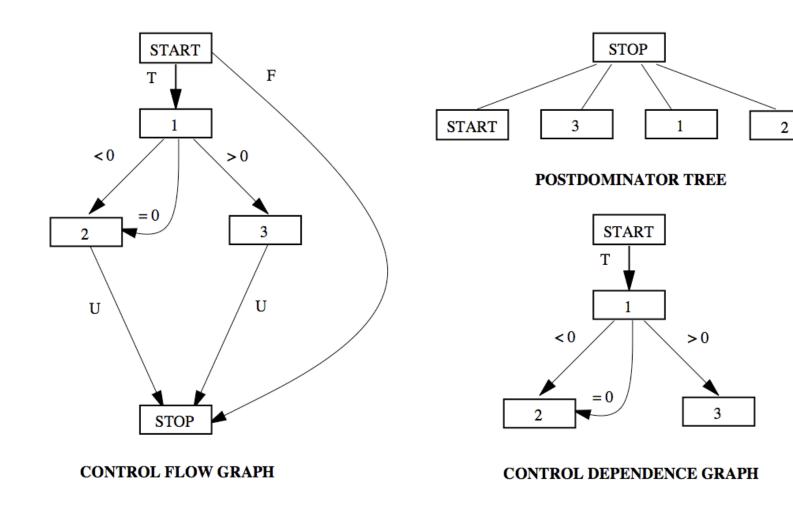
Control Dependence: Definition

Node Y is *control dependent* on node X with label L in *CFG* if and only if

- 1. there exists a nonnull path $X \longrightarrow Y$, starting with the edge labeled L, such that Y post-dominates every node, W, strictly between X and Y in the path, and
- 2. Y does not post-dominate X.

Reference: "The Program Dependence Graph and its Use in Optimization", J. Ferrante et al, ACM TOPLAS, 1987

Example: Acyclic CFG and its Control Dependence Graph (CDG)



Control Dependence: Discussion

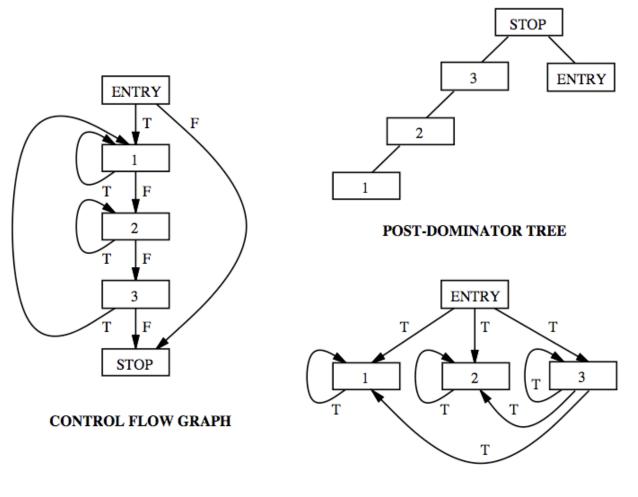
- A node x in directed graph G with a single exit node postdominates node y in G if any path from y to the exit node of G must pass through x.
- A statement y is said to be control dependent on another statement x if:
 - -there exists a non-trivial path from x to y such that every statement $z \neq x$ in the path is postdominated by y and
 - -x is not postdominated by y.
- In other words, a control dependence exists from S1 to S2 if one branch out of S1 forces execution of S2 and another doesn't
- Note that control dependences also can be seen at as a property of basic blocks (depends on CFG granularity)

Program Dependence Graph (PDG) consists of

- 1. Set of nodes, as in the CFG
- 2. Control dependence edges
- 3. Data dependence edges

Together, the control and data dependence edges dictate whether or not a proposed code transformation is legal.

Example: Cyclic CFG and its CDG



CONTROL DEPENDENCE GRAPH

CDG for a Cyclic CFG

Problem: CFG and CDG can have different loop/interval structures, in general

Solution: Compute CDG only for acyclic CFG's e.g.

- 1. Restrict construction and use of CDG's to innermost intervals with acyclic CFG's.
- Compute CDG for acyclic Forward Control Flow Graph), which captures CFG's loop structure by insertion of pseudo nodes and edges. [Cytron, Ferrante, Sarkar 1990]
- 3. Compute CDG for each interval with an acyclic CFG, treating subintervals as atomic nodes.

Control Dependence and Parallelization

• From Chapter 2: Most loop transformations are unaffected by loop-independent dependences

-A forward-branch need not inhibit coarse-grain parallelization

- Iteration-reordering transformations like loop reversal, loop skewing, strip mining, index-set splitting, loop interchange do not affect loop-independent dependences
- Statement reordering transformations might be problematic: loop fusion, loop distribution
 - —Distribution can be performed by including control dependences in recurrence analysis, and performing scalar expansion on branch condition
 - -Fusion of loops that do not contain exit branches is also possible

Loop Distribution

• Example:

Control Dependence Graph

for loop body

	DO I = 1, N
1	IF (A(I).NE.O) THEN
2	IF (B(I)/A(I).GT.1) GOTO 4
	ENDIF
3	A(I) = B(I)
	GOTO 8
4	IF (A(I).GT.T) THEN
5	T = (B(I) - A(I)) + T
	ELSE
6	T = (T + B(I)) - A(I)
7	B(I) = A(I)
	ENDIF
8	C(I) = B(I) + C(I)
	ENDDO

Loop Distribution

